
MATLAB® 7
Desktop Tools and Development Environment

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Desktop Tools and Development Environment

© COPYRIGHT 1984–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14). Formerly part of Using

MATLAB.
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
March 2005 Second printing Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Third printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)

Contents

Startup and Shutdown

1
Starting the MATLAB® Program on Windows®

Platforms . 1-2
Starting the MATLAB® Program from the Windows®

Desktop or a DOS Window . 1-2
Starting the MATLAB® Program from an M-File or Other

File Type on Windows® Platforms 1-3
Utility to Change File Associations for Windows®

Platforms . 1-6
Changing File Associations for the MATLAB® Program

from the Windows® Environment 1-6

Starting the MATLAB® Program on UNIX® Platforms . . 1-7

Starting the MATLAB® Program on Macintosh®

Platforms . 1-9
Starting the MATLAB® Program from the Macintosh®

Desktop . 1-9
Starting the MATLAB® Program from the Start MATLAB

Settings Dialog Box on Macintosh® Platforms 1-10
Starting the MATLAB® Program from a Shell on

Macintosh® Platforms . 1-10

Startup Directory for the MATLAB® Program 1-11
What Is the Startup Directory? . 1-11
Startup Directory (Folder) on Windows® Platforms 1-12
Startup Directory on UNIX® Platforms 1-13
Startup Directory on Macintosh® Platforms 1-13
Changing the Startup Directory . 1-14

Startup Options . 1-18
About Startup Options . 1-18
Specifying Startup Options for Windows® Platforms 1-18
Specifying Startup Options for UNIX® Platforms 1-20
Specifying Startup Options for Macintosh® Platforms 1-20

v

Specifying Startup Options Using the Startup File for the
MATLAB® Program, startup.m . 1-23

Commonly Used Startup Options . 1-23

Toolbox Path Caching in the MATLAB® Program 1-25
About Toolbox Path Caching in the MATLAB® Program . . 1-25
Using the Cache File Upon Startup 1-25
Updating the Cache and Cache File 1-25
Additional Diagnostics with Toolbox Path Caching 1-28

Other Startup Topics . 1-29
Error Log Reporter . 1-29
Passing Perl Variables on Startup . 1-29
Startup and Calling Java™ Software from the MATLAB®

Program . 1-30

Quitting the MATLAB® Program . 1-31
Ways to Quit the MATLAB® Program 1-31
Confirm Quitting the MATLAB® Program 1-31
Running a Script When Quitting the MATLAB®

Program . 1-32
Abnormal Termination . 1-32

Desktop

2
Overview of the Desktop . 2-3

About the Desktop . 2-3
Summary of Desktop Tools . 2-4

Arranging the Desktop . 2-6
Modifying the Desktop Configuration 2-6
Opening and Arranging Tools . 2-6
Opening and Arranging Documents 2-8
Saving Desktop Layouts . 2-13

Examples of Desktop Arrangements 2-15
About These Examples . 2-16

vi Contents

Tool Outside of Desktop and Other Tools Grouped Inside
Desktop Example . 2-16

Maximized Tool in Desktop Example 2-18
Minimized Tools in Desktop Example 2-20
Tiled Documents in Desktop Example 2-24
No Empty Document Tiles Example 2-26
Maximized Documents Outside of the Desktop Example . . 2-27
Floating (Cascaded) Figures in Desktop Example 2-28
Undocked Tools and Documents Example 2-30

MATLAB® Shortcuts — Easily Run a Group of
Statements . 2-32
What Is a Shortcut? . 2-32
Examples of Useful Shortcuts . 2-32
Creating Shortcuts . 2-33
Running Shortcuts . 2-35
Shortcuts Toolbar . 2-35
Organizing and Editing Shortcuts . 2-38

Keyboard Shortcuts . 2-40
Keyboard Shortcuts (Accelerators or Hot Keys) and

Mnemonics . 2-40
Go To First Letter (Type Ahead) Feature in Desktop Tool

Lists . 2-42
Default Button and Active Button (Button with Focus) . . . 2-42

Other Desktop Features . 2-44
Start Button for Accessing Tools . 2-44
Menus and Context Menus . 2-46
Toolbars . 2-47
Status Bar . 2-49
Sizing, Arranging, and Sorting Columns in Tools 2-50
Selecting Multiple Items . 2-51
Cut, Copy, Paste, and Move . 2-51
Macintosh® Platform — Differences in the MATLAB®

Desktop . 2-52
Printing and Page Setup Options for Desktop Tools 2-53
Web Browser . 2-56
Accessing The MathWorks on the Web 2-58
Managing Your License . 2-59
Check for Updates . 2-59
Terms of Use and Patents . 2-60

vii

Preferences . 2-61
Setting Preferences . 2-61
Summary of Preferences . 2-62
Preferences File — matlab.prf . 2-63

General Preferences for MATLAB® Application 2-64
Setting General Preferences for the MATLAB®

Application . 2-64
Toolbox Path Caching Preference . 2-65
Figure Window Printing Preference 2-65
Default Behavior of the Delete Function 2-66
MAT-Files Preferences . 2-66
Confirmation Dialogs Preferences . 2-69
Source Control Preferences . 2-71
Multithreading Preferences . 2-72

Fonts Preferences for Desktop Tools 2-73
Setting Desktop Fonts . 2-73
Desktop Code Font and Desktop Text Font 2-74
Custom Fonts Preferences . 2-78
Changing the Font — Example . 2-79
Antialiasing for Desktop Fonts on Linux® and UNIX®

Platforms . 2-80
Making Fonts Available to MATLAB® Tools 2-80

Colors Preferences for Desktop Tools 2-81
Setting Colors Used in Desktop Tools 2-81
Desktop Tool Colors . 2-83
M-File Syntax Highlighting Colors 2-84
Other Colors . 2-86
See Also . 2-86

Toolbars Preferences for the MATLAB® Desktop and
Editor . 2-87

Accessibility . 2-90
Software Accessibility Support . 2-90
Documentation Accessibility Support 2-91
Assistive Technologies . 2-92
Installation Notes for Accessibility Support 2-93
Troubleshooting . 2-96

viii Contents

Internationalization . 2-99
How the MATLAB® Process Uses Locale Settings 2-99
Setting the Locale . 2-101

Running Functions — Command Window and
History

3
The Command Window . 3-3

About the Command Window . 3-3
Opening the Command Window . 3-3
Command Window Prompt . 3-4
Getting Started Message Bar in the Command Window . . 3-4

Running Functions and Programs, and Entering
Variables . 3-6
Running Statements at the Command Line Prompt 3-6
Running External Programs . 3-8
Evaluating or Opening a Selection . 3-11
Displaying Hyperlinks in the Command Window 3-12

Controlling Input . 3-14
Case and Space Sensitivity . 3-14
Syntax Highlighting . 3-15
Matching Delimiters (Parentheses) 3-16
Cut, Copy, Paste, and Undo Features 3-16
Enter Multiple Lines Without Running Them 3-17
Entering Multiple Functions in a Line 3-17
Entering Long Statements (Line Continuation) 3-17
Recalling Previous Lines . 3-18
Tab Completion in the Command Window 3-19
Keyboard Shortcuts in the Command Window 3-25
Navigating Above the Command Line 3-28

Controlling Output . 3-29
Echoing Execution . 3-29
Suppressing Output . 3-29
Paging of Output in the Command Window 3-29
Formatting and Spacing Numeric Output 3-30

ix

Clearing the Command Window . 3-31
Printing Command Window Contents 3-32
Keeping a Session Log . 3-32

Searching in the Command Window 3-33
Introduction . 3-33
Find Dialog Box . 3-33
Incremental Search . 3-34

Preferences for the Command Window 3-39
Text, Display, Accessibility, and Tab Size Preferences 3-39
Keyboard Preferences . 3-42

Command History Window . 3-48
Overview of the Command History Window 3-48
Viewing Statements in the Command History Window . . . 3-49
Using Statements from the Command History Window . . . 3-51
Searching in the Command History Window 3-52
Printing the Command History Window 3-57
Deleting Entries from the Command History Window 3-57

Preferences for Command History 3-59
Overview of Command History Preferences 3-59
Settings . 3-59
Saving . 3-60
See Also . 3-61

Getting Help in MATLAB® Software

4
Help Browser Overview . 4-3

About the Help Browser . 4-3
Opening the Help Browser . 4-3
Resizing the Help Browser . 4-5
Types of Documentation . 4-7
Accessing Documentation on the Web 4-8
Adding Your Own Help Files . 4-9
Documentation in Other Languages 4-9

x Contents

Finding Information with the Help Browser 4-10
Help Navigator . 4-10
Contents in the Help Browser . 4-10
Index for the Help Browser . 4-13
Search Documentation and Demos with the Help

Browser . 4-16
Favorites . 4-24

Viewing Documentation in the Help Browser 4-26
About the Display Pane . 4-26
Browse to Other Pages . 4-27
Links . 4-28
Find Text in Displayed Pages . 4-28
Copy Information . 4-29
Evaluate a Selection . 4-29
Open a Selection . 4-29
Get Help for a Selection . 4-29
View the Page Source (HTML) . 4-29
View the Page Location . 4-30

Demos in the Help Browser . 4-31
About Demos . 4-31
Using Demos . 4-32
Adding Your Own Demos . 4-36

Preferences for the Help Browser 4-37
Product Filter . 4-37
PDF Reader — Specifying Its Location 4-38
General — Keep Contents Synchronized 4-38
Help on Selection — Specifying Where It Displays 4-39
Help Fonts and Colors Preferences 4-39

Printed Documentation . 4-43
About Printed Manuals . 4-43
Printing a Page from the Help Browser 4-43
Printing the PDF Version of Documentation 4-43

Help Functions . 4-45
About Help Functions . 4-45
Summary Table of Help Functions . 4-45
View Function Reference Pages — the doc Function 4-46

xi

Getting Help in the Command Window — the help
Function . 4-47

Getting Help on Selection for Functions 4-50

Other Forms of Help . 4-53
Documentation for Other Products 4-53
Product-Specific Help Features . 4-53
User-Contributed M-Files . 4-53
Technical Support . 4-54
Newsgroup for MathWorks™ Products 4-54
Other Resources for Information About MathWorks™

Products . 4-55
Version and License Information . 4-55
Provide Feedback . 4-56

Workspace, Search Path, and File Operations

5
MATLAB® Workspace . 5-2

About the Workspace . 5-2
Opening the Workspace Browser . 5-3
Viewing and Editing Values in the Current Workspace . . . 5-4
Saving the Current Workspace . 5-5
Loading a Saved Workspace and Importing Data 5-7
Changing and Copying Variable Names 5-8
Deleting Workspace Variables . 5-8
Viewing Base and Function Workspaces Using the

Stack . 5-9
Creating Plots from the Workspace Browser 5-9
Opening Variables and Objects for Viewing and Editing . . 5-10
Preferences for the Workspace Browser 5-10

Viewing and Editing Workspace Variables with the
Variable Editor . 5-13
About the Variable Editor . 5-13
Opening the Variable Editor . 5-13
Viewing and Editing Cell Arrays, Structures, Objects, and

Multidimensional Arrays in the Variable Editor 5-15

xii Contents

Navigating and Editing Shortcut Keys for the Variable
Editor . 5-23

Changing Size, Content, and Format of Variables in the
Variable Editor . 5-24

Cut, Copy, Paste, and Clear Contents in the Variable
Editor . 5-25

Insert and Delete in the Variable Editor 5-30
Undo and Redo in the Variable Editor 5-30
Exchanging Data with the Command Window 5-30
Exchanging Data with the Microsoft® Excel® Application . . 5-30
Creating Graphs and Variables, and Data Brushing in the

Variable Editor . 5-30
Preferences for the Variable Editor 5-31

Search Path . 5-33
About the Search Path . 5-33
How MATLAB® Software Determines Which File to

Run . 5-34
How MATLAB® Software Finds the Search Path,

pathdef.m . 5-35
Viewing and Setting the Search Path 5-35
Using the Path in Future Sessions 5-41
Recovering from Problems with the Search Path 5-43

File Management Operations . 5-45
About MATLAB® File Operations . 5-45
Current Directory Field . 5-45
Current Directory Browser . 5-46
Viewing and Making Changes to Directories 5-48
Creating, Renaming, Copying, and Removing Directories

and Files . 5-54
Opening and Running Files . 5-58
Finding Files and Content Within Files 5-60
Comparing Files and Directories . 5-65
Accessing Source Control Features 5-65
Preferences for the Current Directory Browser 5-65

xiii

Editing and Debugging M-Files

6
Begin with Existing Code . 6-3

Create M-Files from Command Window and History 6-3
Use Existing M-Files and Examples 6-3

Ways to Edit, Evaluate, and Debug M-Files 6-5

Starting, Customizing, and Closing the Editor 6-7
Starting the Editor . 6-7
Creating a New File in the Editor . 6-8
Opening Existing Files in the Editor 6-9
Arranging Editor Documents . 6-11
Preferences for the Editor . 6-11
Creating and Editing Other Text File Types 6-13
Closing the Editor . 6-13

Entering Statements in the Editor 6-15
Use Command Window Features in the Editor 6-15
Changing the Case of Selected Text 6-15
Undo and Redo . 6-16
Adding Comments . 6-16
Tab Completion in the Editor . 6-22

Appearance of an M-File — Making Files More
Readable . 6-28
Syntax Highlighting . 6-28
Indenting . 6-29
Function Indenting . 6-30
Line and Column Numbers . 6-30
Highlight Current Line . 6-30
Right-Hand Text Limit . 6-31
Class, Function, or Subfunction . 6-31
Code Folding — Expanding and Collapsing M-File

Constructs . 6-32
Split Screen Display . 6-39

Navigating in an M-File . 6-44
Going to a Line Number . 6-44

xiv Contents

Going to a Function (Subfunctions and Nested
Functions) . 6-44

Going to a Bookmark . 6-45
Navigating Back and Forward in Files 6-46
Opening a Selection in an M-File . 6-50

Finding Text in Files . 6-51
Finding Text in the Current File . 6-51
Finding and Replacing Text in the Current File 6-51
Finding Files or Text in Multiple Files 6-53
Incremental Search . 6-53

Comparing Files and Directories . 6-57
What Is the File and Directory Comparisons Tool? 6-57
Comparing Two Text Files . 6-57
Comparing Two MAT-Files . 6-60
Comparing Two Binary Files . 6-63
Comparing Two Directories . 6-64
Using Features of the File and Directory Comparisons

Tool . 6-67
Alternative Ways to Access the Tool 6-69

Keyboard Shortcuts in the Editor 6-70

Saving, Printing, and Closing Files in the Editor 6-73
Saving Files . 6-73
Printing M-Files . 6-75
Closing M-Files . 6-75

Running M-Files in the Editor . 6-77
Running M-Files with No Input Arguments in the

Editor . 6-77
Using Run Configurations to Run M-Files with Input

Arguments in the Editor . 6-78
Create and Use a Run Configuration for an M-File 6-78
Create and Execute Multiple Run Configurations for an

M-File . 6-84
About the run_configurations.m File 6-88
Find Configurations . 6-88
Remove Configurations . 6-91
Reassociate and Rename Configurations 6-92
Other Ways to Run M-Files from the Editor 6-96

xv

Finding Errors, Debugging, and Correcting M-Files . . 6-97

M-Lint Code Analyzer . 6-100
What Is the M-Lint code Analyzer? 6-100
Ways to Use M-Lint . 6-100
M-Lint Automatic Code Analyzer in the Editor 6-101
Suppressing M-Lint Indicators and Messages 6-111
About M-Lint and Unexpected MATLAB® Termination . . . 6-116

Debugging Process and Features . 6-117
Ways to Debug M-Files . 6-117
Preparing for Debugging . 6-117
Setting Breakpoints . 6-121
Running an M-File with Breakpoints 6-125
Stepping Through an M-File . 6-126
Examining Values . 6-128
Correcting Problems and Ending Debugging 6-133
Conditional Breakpoints . 6-140
Breakpoints in Anonymous Functions 6-142
Error Breakpoints . 6-143

Using Cells for Rapid Code Iteration and Publishing
Results . 6-147
What Are Cells? . 6-147
Rapid Code Iteration Overview . 6-147
Understanding and Defining Cells . 6-149
Understanding Nested Cells . 6-155
Navigating and Evaluating with Cells 6-164

Tuning and Managing M-Files

7
Directory Reports in Current Directory Browser 7-2

Accessing and Using Directory Reports 7-2
TODO/FIXME Report . 7-4
Help Report . 7-6
Contents Report . 7-9
Dependency Report . 7-13
Coverage Report . 7-15

xvi Contents

M-Lint Code Check Report . 7-16
Running the M-Lint Code Check Directory Report 7-16
Making Changes Based on M-Lint Messages 7-18
Other Ways to Access M-Lint . 7-26

Profiling for Improving Performance 7-27
What Is Profiling? . 7-27
Profiling Process and Guidelines . 7-28
Using the Profiler . 7-29
Profile Summary Report . 7-35
Profile Detail Report . 7-37
The profile Function . 7-44

Publishing M-Files

8
Overview of Publishing M-Files . 8-2

What Is Meant by Publishing M-Files? 8-2
Using Cells . 8-2
Process for Publishing M-Files . 8-3
Example of a Published M-File . 8-4
Producing the Formatting for the Example 8-11

Formatting M-File Comments for Publishing 8-18
Overview of Formatting M-File Comments for

Publishing . 8-19
Creating Document Titles and Introductory Text for

Publishing an Existing M-File . 8-20
Specifying Preformatted Text in M-Files for Publishing . . 8-26
Specifying Bulleted or Numbered Lists in M-Files for

Publishing . 8-28
Specifying Graphics in M-Files for Publishing 8-31
Specifying HTML Markup Tags in M-Files for

Publishing . 8-34
Specifying LaTeX Markup in M-Files for Publishing 8-36
Specifying TeX Equations and Symbols in M-Files for

Publishing . 8-39
Forcing a Snapshot of Output in M-Files for Publishing . . 8-41
Specifying Bold, Italic, and Monospaced Text Formats in

M-Files for Publishing . 8-42

xvii

Specifying Trademarks in M-Files for Publishing 8-44
Specifying Links in M-Files for Publishing 8-45
About Formatted Blocks . 8-48
Cleaning Up Text Markup Before Publishing M-Files 8-53
Summary of Markup for Formatting M-Files for

Publishing . 8-56

Formatting M-File Code for Publishing 8-59
Overview of Formatting M-File Code for Publishing 8-59
Example of Published M-File Output 8-59

Producing Published Output from M-Files 8-63
About Producing Published Output 8-63
Creating a Publish Configuration for an M-File 8-65
Specify and Save Publish Configuration Settings 8-69
Specify Values for the Publish Settings Property Table . . . 8-73
Creating a Template for Typical Publish Settings 8-84
Run an Existing Publish Configuration 8-87
Create and Run Multiple Publish Configurations for an

M-File . 8-89
About the publish_configurations.m File 8-99
Find Publish Configurations . 8-100
Remove Publish Configurations . 8-100
Reassociate and Rename Publish Configurations 8-100

Using Notebook to Publish to Microsoft® Word

9
About Using Notebook to Publish to Word 9-2

Using Notebook to Create an M-book 9-2
Creating or Opening an M-Book . 9-2
Entering MATLAB® Commands in an M-Book 9-9
Protecting the Integrity of Your Workspace in M-Books . . . 9-9
Ensuring Data Consistency in M-Books 9-10
Debugging and Notebook . 9-10

Defining MATLAB® Commands as Input Cells for
Notebook . 9-11
Defining Commands as Input Cells for Notebook 9-11

xviii Contents

Defining Cell Groups for Notebook 9-12
Defining Autoinit Input Cells for Notebook 9-13
Defining Calc Zones for Notebook . 9-13
Converting an Input Cell to Text with Notebook 9-14

Evaluating MATLAB® Commands with Notebook 9-16
Evaluating Input Commands with Notebook 9-16
Evaluating Cell Groups with Notebook 9-17
Evaluating a Range of Input Cells with Notebook 9-18
Evaluating a Calc Zone with Notebook 9-19
Evaluating an Entire M-Book . 9-19
Using a Loop to Evaluate Input Cells Repeatedly with

Notebook . 9-20
Converting Output Cells to Text with Notebook 9-21
Deleting Output Cells with Notebook 9-21

Printing and Formatting an M-Book 9-22
Printing an M-Book . 9-22
Modifying Styles in the M-Book Template 9-22
Choosing Loose or Compact Format for Notebook 9-23
Controlling Numeric Output Format for Notebook 9-24
Controlling Graphic Output for Notebook 9-24

Configuring Notebook . 9-28

Notebook Feature Reference . 9-29
Bring MATLAB to Front . 9-29
Define Autoinit Cell . 9-30
Define Calc Zone . 9-30
Define Input Cell . 9-31
Evaluate Calc Zone . 9-31
Evaluate Cell . 9-32
Evaluate Loop . 9-33
Evaluate M-Book . 9-33
Group Cells . 9-33
Hide Cell Markers . 9-34
Notebook Options . 9-34
Purge Selected Output Cells . 9-35
Toggle Graph Output for Cell . 9-35
Undefine Cells . 9-35
Ungroup Cells . 9-36

xix

Source Control Interface

10
Source Control Interface on Microsoft® Windows® 10-3

Setting Up the Source Control Interface on Microsoft®

Windows® . 10-4
Create Projects in Source Control System 10-4
Specify Source Control System with MATLAB®

Software . 10-6
Register Source Control Project with MATLAB®

Software . 10-8
Add Files to Source Control . 10-10

Checking Files Into and Out of Source Control from the
MATLAB® Desktop on Microsoft® Windows® 10-12
Check Files Into Source Control . 10-12
Check Files Out of Source Control . 10-13
Undoing the Checkout . 10-14

Additional Source Control Actions on Microsoft®

Windows® . 10-15
Getting the Latest Version of Files for Viewing or

Compiling . 10-15
Removing Files from the Source Control System 10-16
Showing File History . 10-17
Comparing the Working Copy of a File to the Latest Version

in Source Control . 10-19
Viewing Source Control Properties of a File 10-21
Starting the Source Control System 10-22

Performing Source Control Actions from the Editor,
Simulink®, or Stateflow® File Menu on Microsoft®

Windows® . 10-24

Troubleshooting Source Control Problems on
Microsoft® Windows® . 10-25
Source Control Error: Provider Not Present or Not Installed

Properly . 10-25
Restriction Against @ Character . 10-26
Add to Source Control Is the Only Action Available 10-26

xx Contents

More Solutions for Source Control Problems 10-26

Source Control Interface on UNIX® Platforms 10-27

Specifying the Source Control System on UNIX®

Platforms . 10-28
MATLAB® Desktop Alternative . 10-28
Function Alternative . 10-29
Setting a View and Checking Out a Directory with

ClearCase® Software on UNIX® Platforms 10-30

Checking Files Into the Source Control System on
UNIX® Platforms . 10-31
Checking In One or More Files Using the Current Directory

Browser . 10-31
Checking In One File Using the Editor, or the Simulink® or

Stateflow® Products . 10-32
Function Alternative . 10-33

Checking Files Out of the Source Control System on
UNIX® . 10-34
Checking Out One or More Files Using the Current

Directory Browser . 10-34
Checking Out a Single File Using the Editor, or the

Simulink® or Stateflow® Products 10-35
Function Alternative . 10-35

Undoing the Checkout on UNIX® Platforms 10-37
Impact of Undoing a File Checkout 10-37
Undoing the Checkout for One or More Files Using the

Current Directory Browser . 10-37
Undoing the Checkout for a Single File Using the Editor, or

the Simulink® or Stateflow® Products 10-37
Function Alternative . 10-38

Index

xxi

xxii Contents

1

Startup and Shutdown

This set of topics includes options for customizing MATLAB® startup and
shutdown.

Starting the MATLAB® Program on
Windows® Platforms (p. 1-2)

Ways to start the MATLAB program,
including from a desktop icon,
or from a file in the Microsoft®

Windows® Explorer tool. Associating
file types with MATLAB.

Starting the MATLAB® Program on
UNIX® Platforms (p. 1-7)

Starting the MATLAB program on
The Open Group UNIX® platforms.

Starting the MATLAB® Program on
Macintosh® Platforms (p. 1-9)

Ways to start the MATLAB program
on Apple® Macintosh® platforms.

Startup Directory for the MATLAB®

Program (p. 1-11)
Ways to change the directory in
which the MATLAB program starts.

Startup Options (p. 1-18) Instruct the MATLAB program to
perform operations upon startup via
GUIs, a startup file or the matlab
function.

Toolbox Path Caching in the
MATLAB® Program (p. 1-25)

About the cache file and updating
the cache file.

1 Startup and Shutdown

Other Startup Topics (p. 1-29) Error Log Reporter, passing
Perl variables, and calling Sun
Microsystems™ Java™ software
from the MATLAB program.

Quitting the MATLAB® Program
(p. 1-31)

End a session of the MATLAB
program. Instruct MATLAB to
perform specified operations upon
shutdown. Abnormal termination
and recovery.

Starting the MATLAB® Program on Windows® Platforms

In this section...

“Starting the MATLAB® Program from the Windows® Desktop or a DOS
Window” on page 1-2

“Starting the MATLAB® Program from an M-File or Other File Type on
Windows® Platforms” on page 1-3

“Utility to Change File Associations for Windows® Platforms” on page 1-6

“Changing File Associations for the MATLAB® Program from the Windows®

Environment” on page 1-6

Starting the MATLAB® Program from the Windows®

Desktop or a DOS Window
To start the MATLAB® program on a Microsoft® Windows® platform,
select Start > Programs > MATLAB > R2008a > MATLAB R2008a, or
double-click the shortcut icon for MATLAB R2008a on your Windows
desktop. The shortcut was automatically created when you installed
MATLAB. If you have trouble starting MATLAB, see troubleshooting
information in the Installation Guide for Windows.

To start MATLAB from a DOS window, cd to the directory in which you want
to start MATLAB and type matlab at the DOS prompt.

1-2

Starting the MATLAB® Program on Windows® Platforms

You can specify the current directory upon startup as well as other
options—for more information, see “Startup Directory for the MATLAB®

Program” on page 1-11 and “Startup Options” on page 1-18.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”.

Starting the MATLAB® Program from an M-File or
Other File Type on Windows® Platforms
On Windows platforms, you can start MATLAB from the Windows Explorer
tool by double-clicking a file with one of these extensions: .fig, .m, .mat,
and .mdl. MATLAB starts and opens in an appropriate tool. If MATLAB is
already running, the file opens in an appropriate tool in the existing session.

This startup feature is based on your file type associations for the Windows
operating system. When you installed MATLAB for Windows platforms,
you specified the file types to associate with MATLAB. For example, if you
accepted the default options, double-clicking an M-file in the Windows
Explorer tool opens the file in the MATLAB Editor.

The default option also associates MEX-files and P-files with MATLAB in the
Windows Explorer tool, which assigns the file types an icon for MATLAB.
However, double-clicking a file with a .mex (.mexw32 or .mexw64), or .p
extension does not run or open the file in MATLAB.

File Type and Resulting Action

File Type Result

FIG-file Opens file in figure window

M-file Opens file in Editor

MAT-file Opens Import Wizard to load the data into the MATLAB
workspace

MDL-file Opens file in a Simulink® model window

MEX-file Displays icon for MATLAB in Windows Explorer tool

P-file Displays icon for MATLAB in Windows Explorer tool

1-3

1 Startup and Shutdown

Other applications you use can change file associations for your Windows
environment. For example, the Microsoft® Access™ application might
associate files having a .mat extension. Then, double-clicking a MAT-file
opens the Access™ application rather than MATLAB.

If you double-click a FIG-file, M-file, MAT-file, or MDL-file and it does not
open in , and you want it to, try this:

1 In the Windows Explorer tool, right-click a file that has one of the
extensions for MATLAB, for example, myfile.mat.

2 From the context menu, select Open With. If MATLAB is one of the
choices, select it to open myfile.mat in MATLAB. If MATLAB is not one of
the choices, you will need to associate the file type with MATLAB using one
of these techniques:

• “Utility to Change File Associations for Windows® Platforms” on page 1-6

• “Changing File Associations for the MATLAB® Program from the
Windows® Environment” on page 1-6

After associating a file type with MATLAB, you can open other applications
that have the same extension via the context menu. For example, if
you want to open a MAT-file with the Access application, right-click
myfile.mat, and from the context menu, select Open With. The Access
application should be one of the options.

1-4

Starting the MATLAB® Program on Windows® Platforms

File associations for the Windows Explorer tool do not affect what happens
when you open one of these file types from within MATLAB. MATLAB acts on
the file using the MATLAB tool associated with that file type. For example,
even if you associate .mat files with the Access application, when you open a
MAT-file from within MATLAB, it opens the Import Wizard to load the data.

1-5

1 Startup and Shutdown

Utility to Change File Associations for Windows®

Platforms
If you are viewing this topic in the MATLAB Help browser, you can run one of
the utilities provided here to create associations in the Windows environment
for common file types used by MATLAB. This requires you to have permission
to write to the HKEY_CLASSES_ROOT registry key, which typically requires
power user or administrator privileges.

• Run utility to associate MATLAB with FIG-files

• Run utility to associate MATLAB with M-files

• Run utility to associate MATLAB with MAT-files

• Run utility to associate MATLAB with MDL-files

• Run utility to associate MATLAB with MEX-files

• Run utility to associate MATLAB with P-files

• Run utility to associate MATLAB with all of these file types: FIG, M, MAT,
MDL, MEX, and P

The file type icon in the Windows Explorer tool might not reflect the change
immediately.

Changing File Associations for the MATLAB® Program
from the Windows® Environment
You can associate file types with MATLAB from the Windows Explorer tool.
This is useful if you want associate file types other than those you can change
with the “Utility to Change File Associations for Windows® Platforms” on
page 1-6. For example, you can associate the .xml extension with MATLAB,
so that when you double-click an XML file, it opens in the MATLAB Editor.

The following examples show one way to change file associations in the
Windows Explorer tool. Note that these instructions might not exactly apply
to your version of the Windows operating system. If you encounter differences
or problems, try to delete the association before using these instructions, or
see your Windows documentation.

1-6

Starting the MATLAB® Program on UNIX® Platforms

Assume that when you double-click a .mat file in the Windows Explorer tool,
it opens in the Microsoft Access application, but you want the file to open
in MATLAB.

1 In the Windows Explorer tool, select Tools > Folder Options.

2 In the resulting Folder Options dialog box, select the File Types tab. From
the Registered file types list, select the MAT extension. (If you do not see
MAT in the list, click New to add it.)

Under Details for ’MAT’ extension, click Change.

3 In the resulting Open With dialog box, select MATLAB from the list.

If the list does not include MATLAB, click Browse. Then look for and select
matlab.exe, and click Open. The file is located in the folder in which
you installed MATLAB. An example of the default location is C:\Program
Files\MATLAB\R2008a\bin.

4 In the Open With dialog box, click OK. In the Folder Options dialog box,
click Close.

Starting the MATLAB® Program on UNIX® Platforms
To start the MATLAB® program on The Open Group UNIX® platforms, type
matlab at the operating system prompt.

If you did not set up symbolic links in the installation procedure, you must
enter the full pathname to start MATLAB, matlabroot/bin/matlab, where
matlabroot is the name of the directory in which you installed MATLAB. If
you have trouble starting MATLAB, see troubleshooting information in the
Installation Guide for UNIX.

You can specify the current directory upon startup as well as other
options—for more information, see “Startup Directory for the MATLAB®

Program” on page 1-11 and “Startup Options” on page 1-18.

1-7

1 Startup and Shutdown

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. If the DISPLAY environment variable is
not set or is invalid, the desktop will not display.

1-8

Starting the MATLAB® Program on Macintosh® Platforms

Starting the MATLAB® Program on Macintosh® Platforms

In this section...

“Starting the MATLAB® Program from the Macintosh® Desktop” on page 1-9

“Starting the MATLAB® Program from the Start MATLAB Settings Dialog
Box on Macintosh® Platforms” on page 1-10

“Starting the MATLAB® Program from a Shell on Macintosh® Platforms”
on page 1-10

Starting the MATLAB® Program from the Macintosh®

Desktop
To start the MATLAB® program on Apple® Macintosh® platforms, double-click
the icon for MATLAB on the Macintosh desktop. If there isn’t an icon for
MATLAB on the desktop, you can find the MATLAB 7.6 icon in the folder where
MATLAB was installed, which by default, is Applications/MATLAB R2008a.

You can specify the current directory upon startup as well as other
options—for more information, see “Startup Directory for the MATLAB®

Program” on page 1-11 and “Startup Options” on page 1-18.

If MATLAB fails to start due to a problem with required system components
such as X11 or Sun Microsystems™ Java™ software, diagnostics run
automatically and advise you of the problem, as well as suggest actions to
correct it. You can manually run the diagnostics using the Start MATLAB
Settings dialog box—for more information, see “Specifying Startup Options
for Macintosh® Platforms” on page 1-20.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. If the DISPLAY environment variable is
not set or is invalid, the desktop will not display.

Limitation
On Macintosh platforms, if you run MATLAB remotely, for example using
rlogin, you must run with nodisplay, noawt, and nojvm startup options—for
more information, see “Startup Options” on page 1-18.

1-9

1 Startup and Shutdown

Starting the MATLAB® Program from the Start MATLAB
Settings Dialog Box on Macintosh® Platforms
Use the Start MATLAB Settings dialog box to specify startup options and then
start MATLAB using those options. For more information, see “Specifying
Startup Options for Macintosh® Platforms” on page 1-20.

Starting the MATLAB® Program from a Shell on
Macintosh® Platforms
You can start MATLAB on Macintosh platforms the way you would start
it on UNIX® platforms—see “Starting the MATLAB® Program on UNIX®

Platforms” on page 1-7.

1-10

Startup Directory for the MATLAB® Program

Startup Directory for the MATLAB® Program

In this section...

“What Is the Startup Directory?” on page 1-11

“Startup Directory (Folder) on Windows® Platforms” on page 1-12

“Startup Directory on UNIX® Platforms” on page 1-13

“Startup Directory on Macintosh® Platforms” on page 1-13

“Changing the Startup Directory” on page 1-14

What Is the Startup Directory?
The startup directory is the current directory in MATLAB® program when
it starts. It is convenient if the current directory upon startup is one that
you regularly use. By default, it is a Documents/MATLAB subdirectory, or My
Documents/MATLAB on Microsoft® Windows® platforms other than Windows
Vista™. You can specify a different startup directory. The userpath, a
directory that is by default automatically added to the search path upon
startup, is the default startup directory on Windows platforms, while on The
Open Group UNIX® and Apple® Macintosh® platforms, the userpath can be
set as the startup directory.

Accepting the default value for userpath, and using it as the startup directory,
offers these features:

• You can store the MATLAB files you work with in one, appropriately-named
location, Documents/MATLAB (or My Documents/MATLAB).

• Your MATLAB files are readily available upon startup, because the current
directory is automatically the Documents/MATLAB subdirectory (or My
Documents/MATLAB).

• You can always run your files because MATLAB automatically adds the
Documents/MATLAB subdirectory (or My Documents/MATLAB) to the top of
the search path upon startup.

• The first time you run a new MATLAB version, MATLAB automatically
creates the Documents/MATLAB subdirectory (or My Documents/MATLAB).

1-11

1 Startup and Shutdown

• This location also utilizes the benefits provided by the standard location
in the Windows and Macintosh environments for storing personal files.
Files in the Documents/MATLAB subdirectory (or My Documents/MATLAB) are
available to you when you use other machines. Because each user has
their own Documents/MATLAB subdirectory (or My Documents/MATLAB),
other users, even those using your machine, cannot access files in your
Documents/MATLAB subdirectory (or My Documents/MATLAB.

• When you upgrade to a newer version of MATLAB, MATLAB automatically
continues to use the same MATLAB subdirectory and your existing files,
with all of the above benefits.

To view the userpath value, specify a location other than the default for
userpath, or if you do not want to take advantage of userpath, use the
userpath function.

There are other ways to change the startup directory as well as the directories
on your search path; for more information, see “Changing the Startup
Directory” on page 1-14 and “Viewing and Setting the Search Path” on page
5-35.

Startup Directory (Folder) on Windows® Platforms
The startup directory (folder) on Windows platforms depends on any startup
options you specified and the way you started MATLAB:

• “Startup Directory When Starting the MATLAB® Program from a
Windows® Shortcut” on page 1-12

• “Startup Directory When Starting the MATLAB® Program from an
Associated File” on page 1-13

• “Startup Directory When Starting the MATLAB® Program from a DOS
Window” on page 1-13

Startup Directory When Starting the MATLAB® Program from a
Windows® Shortcut
When you start the MATLAB program from a MATLAB shortcut in the
Windows environment, by default MATLAB sets the startup directory
to the userpath value, whose default value is My Documents\MATLAB, or

1-12

Startup Directory for the MATLAB® Program

Documents\MATLAB on Windows Vista platforms. The userpath directory is
automatically added to the search path.

If there is a value specified in the Start in field of the Properties dialog box
for the MATLAB program, that value is the startup directory, although the
userpath is added to the search path. If MATLAB does not find a valid
userpath value upon startup, and the Start in field is empty, the startup
directory is the Windows desktop.

Startup Directory When Starting the MATLAB® Program from
an Associated File
When you start MATLAB by double-clicking a file type associated with
MATLAB, that file’s directory is the startup directory. The userpath directory
is automatically added to the search path.

Startup Directory When Starting the MATLAB® Program from a
DOS Window
When you start MATLAB from a DOS window, the startup directory is the
directory in which you ran the matlab function. The userpath directory is
automatically added to the search path.

Startup Directory on UNIX® Platforms
On The Open Group UNIX platforms, the default startup directory is
the directory from which you started MATLAB. You can specify that the
userpath be the startup directory by setting the environment variable
MATLAB_USE_USERPATH value to 1 prior to startup. By default, userpath
is userhomme/Documents/MATLAB, and MATLAB automatically adds the
userpath directory to the top of is search path upon startup. To specify a
different directory for userpath, and for other options, use the userpath
function.

Startup Directory on Macintosh® Platforms
When you start MATLAB on Apple Macintosh platforms by double-clicking
the MATLAB application, the startup directory is the value returned by
userpath, which by default is userhome/Documents/MATLAB. MATLAB
automatically adds the userpath directory to the top of its search path upon

1-13

1 Startup and Shutdown

startup. To specify a different directory for userpath and for other options,
use the userpath function.

When you start MATLAB using the Start MATLAB Settings dialog box or
icons you created from it, the value specified in its Current directory field is
the startup directory.

When you start MATLAB in a shell, the startup directory is the same as
for other UNIX platforms—see “Startup Directory on UNIX® Platforms” on
page 1-13.

Changing the Startup Directory
You can start MATLAB in a directory other than the default in one of these
ways:

• “Changing the Startup Directory Via the userpath Function” on page 1-14

• “Changing the Startup Directory Using the Shortcut — Windows®

Platforms Only” on page 1-14

• “Changing the Startup Directory Using the Start MATLAB Settings Dialog
Box — Macintosh® Platforms Only” on page 1-17

• “Changing the Startup Directory Using the startup.m File” on page 1-17

Changing the Startup Directory Via the userpath Function
Use the userpath function to change the startup directory as well as to add
the startup directory to the search path upon startup. For more information,
see the userpath reference page and “Startup Directory for the MATLAB®

Program” on page 1-11.

Changing the Startup Directory Using the Shortcut — Windows®

Platforms Only
To change the startup directory on Windows platforms using the shortcut,

1 Right-click the shortcut icon for MATLAB and select Properties from
the context menu.

The Properties dialog box for MATLAB opens to the Shortcut pane.

1-14

Startup Directory for the MATLAB® Program

2 The Target field contains the full path to start MATLAB.

By default, the startup directory is My Documents\MATLAB or
Documents\MATLAB on Windows Vista; for more information, see “Startup
Directory (Folder) on Windows® Platforms” on page 1-12.

In the Start in field, specify the full path to the directory in which you
want MATLAB to start, and click OK.

1-15

1 Startup and Shutdown

�����������������	�
��������������

��������������	������	����	������������������
���������������������
�����������	
����
���

The next time you start MATLAB using that shortcut icon, the current
directory will be the one you specified in step 2.

1-16

Startup Directory for the MATLAB® Program

You can make multiple shortcuts to start MATLAB, each with its own startup
directory, and with each startup directory having different startup options.

Changing the Startup Directory Using the Start MATLAB
Settings Dialog Box — Macintosh® Platforms Only
To change the startup directory and specify other startup options on
Macintosh platforms, use the Start MATLAB Setting s dialog box—for details,
see “Specifying Startup Options for Macintosh® Platforms” on page 1-20.

Changing the Startup Directory Using the startup.m File
Use the startup.m file to specify the startup directory as well as other startup
options—for details, see “Specifying Startup Options Using the Startup File
for the MATLAB® Program, startup.m” on page 1-23.

1-17

1 Startup and Shutdown

Startup Options

In this section...

“About Startup Options” on page 1-18

“Specifying Startup Options for Windows® Platforms” on page 1-18

“Specifying Startup Options for UNIX® Platforms” on page 1-20

“Specifying Startup Options for Macintosh® Platforms” on page 1-20

“Specifying Startup Options Using the Startup File for the MATLAB®

Program, startup.m” on page 1-23

“Commonly Used Startup Options” on page 1-23

About Startup Options
You can define startup options that instruct the MATLAB® program to
perform certain operations when you start it. On Windows® and Macintosh®

platforms, you can use a GUI to specify the options. On all platforms, you can
specify these options using a startup file (startup.m), or in conjunction with
the matlab startup function.

Specifying Startup Options for Windows® Platforms
You can add selected startup options (also called command flags or switches
for the command line) to the target path for your shortcut in the Windows
environment for MATLAB. Or you can add them to the command line when
you start MATLAB in a DOS window. For more information about the options,
see“Commonly Used Startup Options” on page 1-23.

On Windows platforms, a startup option is preceded by either a hyphen (-) or
a slash (/). For example, -nosplash and /nosplash are equivalent ways of
specifying the nosplash option for users on Windows platforms.

Startup Options for a Shortcut in Windows® Environment
To use startup options for the MATLAB shortcut icon in a Windows
environment, follow these steps:

1-18

Startup Options

1 Right-click the shortcut icon for MATLAB and select Properties from
the context menu. The Properties dialog box for MATLAB opens to the
Shortcut pane.

2 In the Target field, after the target path for matlab.exe, add the startup
option, and click OK. For example, adding -r "filename" runs the M-file
filename after startup.

This example instructs MATLAB to automatically run the file results after
startup, where results.m is in the startup directory or on the search path for
MATLAB. The statement in the Target field might appear as

C:\Program Files\MATLAB\R2008a\bin\matlab.exe -r "results"

Include the statement in double quotation marks ("statement"). Use only
the filename, not the file extension or pathname. For example, MATLAB
produces an error when you run

... matlab.exe -r "D:\results.m"

Use semicolons or commas to separate multiple statements. This example
changes the format to short, and then runs the M-file results:

... matlab.exe -r "format('short');results"

Separate multiple options with spaces. This example starts MATLAB without
displaying the splash screen, and then runs the M-file results:

... matlab.exe -nosplash -r "results"

Startup Options in a DOS Window
When you start MATLAB in a DOS window, include startup options after
the matlab command.

This example uses the nosplash startup option to start MATLAB without the
splash screen, and adds the -r option to run the results function located in
the startup directory, after starting MATLAB in a DOS window:

matlab -nosplash -r "results"

1-19

1 Startup and Shutdown

Specifying Startup Options for UNIX® Platforms
Include startup options (also called command flags or command line switches)
after the matlab command. For more information about the options,
see“Commonly Used Startup Options” on page 1-23. On UNIX® platforms, a
startup option is preceded by a hyphen (-). For example, to start MATLAB
without the splash screen, type

matlab -nosplash

See also the userpath function.

Specifying Startup Options for Macintosh® Platforms
On Macintosh platforms, use the Start MATLAB Settings dialog box to specify
startup options and then start MATLAB.

The dialog box appears the first time you start a new version of MATLAB. You
can access the dialog box at any time by double-clicking the Start MATLAB
Settings application (.smat extension) in the Finder, located in the same
directory as the MATLAB application.

1-20

Startup Options

Follow these steps to specify options in the dialog box:

1 Either select one of the standard settings, or create a new setting.

You can change the options in any of the three standard settings provided,
Xterm, Terminal, and MATLAB Desktop, or add your own settings. For
example, if you always start MATLAB from an xterm, but you do not use
the default startup directory, use the Xterm setting provided, but modify
its Current directory value. If you regularly start MATLAB from the
desktop, but use different options depending on the project you are working
on, create and name a new setting for each project by using the + (add
setting) button.

2 For the selected setting, specify the Start MATLAB from option, which is
how you will interact with MATLAB, either using MATLAB desktop or a
shell. Selecting Shell is equivalent to using the -nodesktop startup option

1-21

1 Startup and Shutdown

when you start MATLAB with the matlab command; MATLAB starts
without the desktop and you then interact with MATLAB via the shell.

3 Specify the startup directory for MATLAB by using the Current directory
options. You can accept the default, the User work folder, which is
usually /home/username/Documents/MATLAB, or you can type a value or
browse to specify a different startup directory.

4 If you want MATLAB to automatically run a specified statement
immediately after startup, enter the statement in the Run command
field. For more information about how to specify statements, see the r
option in “Commonly Used Startup Options” on page 1-23.

5 To run MATLAB without the Sun Microsystems™ Java™ software, clear
the Use Java check box. For more information, see the nojvm option in
“Commonly Used Startup Options” on page 1-23.

6 To automatically write output from MATLAB to a log file, select the Log to
check box, and use the default filename or specify a different log filename.

7 After setting the options, you can start MATLAB using those options—click
the Start MATLAB button.

You can also drag one of the settings to the desktop or a location in
the Finder, which creates a MATLAB icon in that location, having the
name of that setting. Double-click the icon to start MATLAB using the
options specified for that setting. You can also create the icon by selecting
File > Export.

In Start MATLAB Settings, you can also access tools from the Diagnostics
menu to help you resolve startup problems.

You can specify these and other startup options for Macintosh platforms with
the matlab command, as described at “Specifying Startup Options for UNIX®

Platforms” on page 1-20.

1-22

Startup Options

Specifying Startup Options Using the Startup File for
the MATLAB® Program, startup.m
At startup, MATLAB automatically executes the master M-file matlabrc.m
and, if it exists, startup.m. The file matlabrc.m, which is in the
matlabroot/toolbox/local directory, is reserved for use by The MathWorks
and by the system manager on multiuser systems.

The file startup.m is for you to specify startup options. For example, you
can modify the default search path, predefine variables in your workspace,
or define defaults for Handle Graphics® objects. Creating a startup.m file
with the lines

addpath /home/username/mytools
cd /home/username/mytools

adds /home/username/mytools to your default search path and makes
mytools the current directory upon startup.

Location of startup.m
Place the startup.m file in the default or current startup directory, which
is where MATLAB first looks for it. For more information, see “Startup
Directory for the MATLAB® Program” on page 1-11.

Commonly Used Startup Options
The following table provides a list of some commonly used startup options
for both Windows and UNIX platforms. For more information, including a
complete list of startup options, see the matlab (Windows) reference page or
the matlab (UNIX) reference page.

Platform Option Description

All -c licensefile Set LM_LICENSE_FILE to licensefile. It can have the form
port@host.

All -h or -help Display startup options (without starting MATLAB).

All -logfile
"logfilename"

Automatically write output from MATLAB to the specified
log file.

1-23

1 Startup and Shutdown

Platform Option Description

UNIX
platforms

-nodesktop Start MATLAB without bringing up the MATLAB desktop.
Use this option to run without an X-window, for example,
in VT100 mode, or in batch processing mode. Note that if
you pipe to MATLAB using the > constructor, the nodesktop
option is used automatically.

With nodesktop, you can still use most development
environment tools by starting them via a function. For
example, use preferences to open the Preferences dialog box
and helpbrowser to open the Help browser.

Do not use nodesktop to provide a command-line
interface. If you prefer a command-line interface, select
Desktop > Desktop Layout > Command Window > Only.

Windows
platforms

-minimize Start MATLAB with the desktop minimized. Any desktop
tools or documents that were undocked when MATLAB was
last closed will not be minimized upon startup.

UNIX
platforms

-nojvm Start MATLAB without loading the Sun MicrosystemsJava
JVM™ software. This minimizes memory usage and improves
initial startup speed, but restricts functionality. With nojvm,
you cannot use the desktop, or any tools that require Java
software.

For example, you cannot set preferences if you start MATLAB
with the -nojvm option. However, you can start MATLAB
once without the -nojvm option, set the preference, and quit
MATLAB. MATLAB remembers that preference when you
start it again, even if you use the -nojvm option.

All -nosplash Start MATLAB without displaying its splash screen.

All -r "statement" Automatically run the specified statement immediately after
MATLAB starts. This is sometimes referred to as calling
MATLAB in batch mode. Files you run must be in the startup
directory for MATLAB or on the search path. Do not include
pathnames or file extensions. Enclose the statement in double
quotation marks ("statement"). Use semicolons or commas
to separate multiple statements

1-24

Toolbox Path Caching in the MATLAB® Program

Toolbox Path Caching in the MATLAB® Program

In this section...

“About Toolbox Path Caching in the MATLAB® Program” on page 1-25

“Using the Cache File Upon Startup” on page 1-25

“Updating the Cache and Cache File” on page 1-25

“Additional Diagnostics with Toolbox Path Caching” on page 1-28

About Toolbox Path Caching in the MATLAB® Program
For performance reasons, the MATLAB® program caches toolbox directory
information across sessions. The caching features are mostly transparent to
you. However, if MATLAB does not see the latest versions of your M-files
or if you receive warnings about the toolbox path cache, you might need to
update the cache.

Using the Cache File Upon Startup
Upon startup, MATLAB gets information from a cache file to build the toolbox
directory cache. Because of the cache file, startup is faster, especially if you
run MATLAB from a network server or if you have many toolbox directories.
When you end a session, MATLAB updates the cache file.

MATLAB does not use the cache file at startup if you clear the Enable
toolbox path cache check box in File > Preferences > General. Instead,
it creates the cache by reading from the operating system directories, which
is slower than using the cache file.

Updating the Cache and Cache File

How the Toolbox Path Cache Works
MATLAB caches (essentially, stores in a known files list) the names and
locations of files in matlabroot/toolbox directories. These directories are for
files provided with MathWorks™ products that should not change except for
product installations and updates. Caching those directories provides better

1-25

1 Startup and Shutdown

performance during a session because MATLAB does not actively monitor
those directories.

We strongly recommend that you save any M-files you create and any
files provided by The MathWorks that you edit in a directory that is
not in the matlabroot/toolbox directory tree. If you keep your files in
matlabroot/toolbox directories, they may be overwritten when you install
a new version of MATLAB.

When to Update the Cache
When you add files to matlabroot/toolbox directories, the cache and the
cache file need to be updated. MATLAB updates the cache and cache file
automatically when you install toolboxes or toolbox updates using the installer
for MATLAB. MATLAB also updates the cache and cache file automatically
when you use MATLAB tools, such as when you save files from the MATLAB
Editor to matlabroot/toolbox directories.

When you add or remove files in matlabroot/toolbox directories by some
other means, MATLAB might not recognize those changes. For example,
when you

• Save new files in matlabroot/toolbox directories using an external editor

• Use operating system features and commands to add or remove files in
matlabroot/toolbox directories

MATLAB displays this message:

Undefined function or variable

You need to update the cache so MATLAB will recognize the changes you
made in matlabroot/toolbox directories.

Steps to Update the Cache
To update the cache and the cache file,

1 Select File > Preferences > General.

The General Preferences pane is displayed.

1-26

Toolbox Path Caching in the MATLAB® Program

2 Click Update Toolbox Path Cache and click OK.

Function Alternative
To update the cache, use rehash toolbox. To also update the cache file, use
rehash toolboxcache. For more information, see rehash.

1-27

1 Startup and Shutdown

Additional Diagnostics with Toolbox Path Caching
To display information about startup time when you start MATLAB, select
the Enable toolbox path cache diagnostics check box in General
Preferences.

1-28

Other Startup Topics

Other Startup Topics

In this section...

“Error Log Reporter” on page 1-29

“Passing Perl Variables on Startup” on page 1-29

“Startup and Calling Java™ Software from the MATLAB® Program” on
page 1-30

Error Log Reporter
Upon startup, if the MATLAB® program detects an error log generated by
a serious problem encountered during the previous session, an Error Log
Reporter prompts you to e-mail the log to The MathWorks for analysis. Click
Send Report to e-mail the log, or click Help for more information. After
sending the log, a confirmation message appears in the Command Window.
For more information, see “Abnormal Termination” on page 1-32.

Passing Perl Variables on Startup
You can pass Perl variables to MATLAB on startup by using the -r option of
the matlab function. For example, assume a MATLAB function test that
takes one input variable:

function test(x)

To start MATLAB with the function test, use the command

matlab -r "test(10)"

On some platforms, you might need to use double quotation marks:

matlab -r "test(10)"

This command starts MATLAB and runs test with the input argument 10.

To pass a Perl variable instead of a constant as the input parameter, follow
these steps.

1 Create a Perl script such as

1-29

1 Startup and Shutdown

#!/usr/local/bin/perl
$val = 10;
system('matlab -r "test(' . ${val} . ')"');

2 Invoke the Perl script at the prompt using a Perl interpreter.

For more information, see the matlab (Windows) or matlab (UNIX) reference
page.

Startup and Calling Java™ Software from the
MATLAB® Program
When the MATLAB program starts, it constructs the class path for Sun
Microsystems™ Java™ software using librarypath.txt as well as
classpath.txt. If you call Java software from MATLAB, see more about
this in “The Java Class Path” and “Locating Native Method Libraries” in the
MATLAB External Interfaces documentation.

1-30

Quitting the MATLAB® Program

Quitting the MATLAB® Program

In this section...

“Ways to Quit the MATLAB® Program” on page 1-31

“Confirm Quitting the MATLAB® Program” on page 1-31

“Running a Script When Quitting the MATLAB® Program” on page 1-32

“Abnormal Termination” on page 1-32

Ways to Quit the MATLAB® Program
To quit the MATLAB® program at any time, do one of the following:

• Click the Close box in the MATLAB desktop.

• Select Exit MATLAB from the desktop File menu.

• Type quit at the Command Window prompt.

MATLAB closes after

• Prompting you to confirm quitting, if that preference is specified (see
“Confirm Quitting the MATLAB® Program” on page 1-31)

• Prompting you to save any unsaved files

• Running the finish.m script, if it exists in the current directory or on
the search path (see “Running a Script When Quitting the MATLAB®

Program” on page 1-32)

Confirm Quitting the MATLAB® Program
To set a preference that displays a confirmation dialog box when you quit
MATLAB, select File > Preferences > General > Confirmation Dialogs,
select the Confirm before quitting check box, and click OK. MATLAB then
displays the following dialog box when you quit.

1-31

1 Startup and Shutdown

For more information, see “Confirmation Dialogs Preferences” on page 2-69.

You can also display your own quitting confirmation dialog box using a
finish.m script, as described in the following section.

Running a Script When Quitting the MATLAB®

Program
When MATLAB quits, it runs the script finish.m, if finish.m exists in
the current directory or anywhere on the search path. You create the file
finish.m. It contains statements to run when MATLAB terminates, such as
saving the workspace or displaying a confirmation dialog box. There are two
sample files in matlabroot/toolbox/local that you can use as the basis
for your own finish.m file:

• finishsav.m — Includes a save function so the workspace is saved to
a MAT-file when MATLAB quits.

• finishdlg.m — Displays a confirmation dialog box that allows you to
cancel quitting.

For more information, see the finish reference page.

Abnormal Termination

• “When the MATLAB® Program Terminates Unexpectedly” on page 1-33

• “Error Log Reporting” on page 1-34

• “Recovering Data After an Abnormal Termination” on page 1-34

1-32

Quitting the MATLAB® Program

When the MATLAB® Program Terminates Unexpectedly
In the event MATLAB experiences a segmentation violation (segv) or other
serious problem, the MATLAB System Error dialog box opens to notify
you about the problem. When this occurs, the internal state of MATLAB
is unreliable and not suitable for further use. You should exit as soon as
possible and then restart. However, you might want to first try to save your
work in progress.

To exit and restart without trying to save your work, follow these steps:

1 If you want to view the stack trace for the problem, click Details.

2 Click Close to terminate MATLAB.

3 Restart MATLAB. If the Error Log Reporter dialog box opens, send a report
to The MathWorks.

To try to save your work in progress before exiting and restarting MATLAB,
follow these steps:

1 If you want to view the stack trace for the problem, click Details.

2 Click Attempt to Continue. MATLAB tries to return to the Command
Window or tool you were using.

The Command Window displays the message Please exit and restart
MATLAB to the left of the prompt, which reminds you to discontinue use.

3 From the Command Window or tool, try to save the workspace and unsaved
files.

Caution Because the internal state of MATLAB might be corrupted,
do not save existing files to the same filename. Instead, specify a new
filename. The information in the new file might be corrupted or incomplete.

4 Exit MATLAB immediately after saving because any further usage would
be unreliable.

1-33

1 Startup and Shutdown

5 Restart MATLAB. If the Error Log Reporter dialog box opens, send a report
to The MathWorks.

Error Log Reporting
Upon startup, if MATLAB detects an error log generated by a serious
problem during the previous session, an Error Log Reporter prompts you
to e-mail the log to The MathWorks for analysis. The error log contains
the stack trace and information about the MATLAB configuration. If
the problem occurs repeatedly, make note of what seems to cause it,
look for information about it in the MathWorks Bug Reports database,
and if the problem is reproducible, please submit a Service Request via
http://www.mathworks.com/support/contact_us/ts/help_request_1.html.

E-Mailing Error Log Reports. There are some situations where the Error
Log Reporter will not open, for example, when you start MATLAB with a -r
option or run in deployed mode. It also will not open if you selected the option
to never send error reports the last time the Error Log Reporter opened. If
you experience abnormal termination but do not see the Error Log Reporter
on subsequent startups, you can instead e-mail the reports.

Send e-mail to segv@mathworks.com with this file attached:
C:\Temp\matlab_crash_dump.####. After you send the log file, delete it or
move it to another location. If you do not delete the log file, the Error Log
Reporter can detect it on the next startup and prompt you to send it, even
though you already e-mailed it.

Recovering Data After an Abnormal Termination
If MATLAB terminates unexpectedly, you might lose information. After you
start MATLAB again, you can try these suggestions to recover some of the
information.

• Use the Command History or the file on which it is based, history.m,
to run statements from the previous session. You might be able to
approximately recreate data as it was prior to the termination. For more
information, see “Overview of the Command History Window” on page 3-48.

• If you used the diary function or -logfile startup option for the session
in which MATLAB terminated unexpectedly, you might be able to recover
output.

1-34

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/contact_us/ts/help_request_1.html
mailto:segv@mathworks.com

Quitting the MATLAB® Program

• If you saved the workspace to a MAT-file during the session, you can
recover it by loading the MAT-file. For more information, see “Loading
a Saved Workspace and Importing Data” on page 5-7, and “Saving the
Current Workspace” on page 5-5.

• If you were editing a file in the Editor when MATLAB terminated
unexpectedly, and you had the autosave preference enabled, you should be
able to recover changes you made to files you had not saved.

• If you were in a Simulink® session when a segmentation violation occurred,
and you have the Simulink Autosave Options preference selected, note
that the last autosave file for the model reflects the state of the autosave
data prior to the segmentation violation. Because Simulink models might
be corrupted by a segmentation violation, a model is not autosaved after a
segmentation violation occurs.

Some of the above suggestions refer to actions you might have needed to
take during the session when MATLAB terminated. If you did not take those
actions, consider regularly performing them to help you recover from any
future abnormal terminations you might experience.

1-35

1 Startup and Shutdown

1-36

2

Desktop

If you have an active Internet connection, you can watch the Working in
the Development Environment video demo for an overview of the major
functionality. The easiest way to learn to use the desktop is just by working
with it. If you have problems or questions, refer to the following sections.

Overview of the Desktop (p. 2-3) Basic summary of the desktop and
its tools.

Arranging the Desktop (p. 2-6) Open and arrange desktop tools and
documents to suit your needs.

Examples of Desktop Arrangements
(p. 2-15)

Scan the examples to see various
ways to arrange the desktop.

MATLAB® Shortcuts — Easily Run
a Group of Statements (p. 2-32)

Use MATLAB® shortcuts to run a
group of MATLAB functions from
the desktop.

Keyboard Shortcuts (p. 2-40) Use the keyboard as an alternative
to a mouse or other pointing device
to access desktop features.

Other Desktop Features (p. 2-44) Use the Start button, toolbars,
menus and context menus, and
status bar. Select multiple items,
cut, copy, and paste, set up pages
for printing, use a MATLAB Web
browser, and access the MathWorks
Web site from MATLAB.

Preferences (p. 2-61) Specify options for tools such as
fonts, colors, and more.

2 Desktop

General Preferences for MATLAB®

Application (p. 2-64)
Set options for toolbox path caching,
figure window printing, delete
function behavior, MAT-file save
format, confirmation dialogs, source
control system, and multithreaded
computation.

Fonts Preferences for Desktop Tools
(p. 2-73)

Use desktop font preferences to
specify the font characteristics for
MATLAB desktop tools.

Colors Preferences for Desktop Tools
(p. 2-81)

Set desktop color preferences for
desktop tools, including syntax
highlighting.

Toolbars Preferences for the
MATLAB® Desktop and Editor
(p. 2-87)

Specify the controls to appear on the
desktop and editor toolbars, as well
as the location of the controls.

Accessibility (p. 2-90) Use assistive technologies and
accessibility features when working
with MathWorks™ software.

Internationalization (p. 2-99) How MATLAB software handles
user locale settings.

2-2

Overview of the Desktop

Overview of the Desktop

In this section...

“About the Desktop” on page 2-3

“Summary of Desktop Tools” on page 2-4

About the Desktop
In general, when you start the MATLAB® program, it displays the MATLAB
desktop, a set of tools (graphical user interfaces or GUIs) for managing files,
variables, and applications associated with MATLAB.

The first time you start MATLAB, the desktop appears with the default
layout, as shown in the following illustration. You can change the desktop
arrangement to meet your needs, including resizing, moving, and closing tools.
For details, see “Arranging the Desktop” on page 2-6.

Some tools, such as the Editor and Variable Editor, support multiple document
windows within them. Similarly, you can group multiple figure windows
together. For information about working with documents in the desktop, see
“Opening and Arranging Documents” on page 2-8.

2-3

2 Desktop

�	��������� �����
�������	������

��!������	�	"��
�	�	�	"�����
���
���	�����

#����������
�����������������
������

���������� ��
������	� �������
���
����������	� �

$�
���������	�
��%�
��������
�������
��������
�

&��
��
��

'� ������������
%�������	"�
�	������

�	������������
��!	���
����
�����������

(
	�)����������
%���������*�	�)
�������������
�
��������

Summary of Desktop Tools
The following tools are managed by the MATLAB desktop, although not all of
them appear by default when you first start. If you prefer a command-line
interface, you can often use equivalent functions to accomplish the same
result. To perform the equivalent of the GUI tasks in M-files, you must

2-4

Overview of the Desktop

use the equivalent function. Instructions for using equivalent functions to
perform the task are provided with the documentation for each tool and are
typically labeled as Function Alternatives.

Desktop Tool Description

Command History View a log of or search for the statements you entered in the
Command Window, copy them, execute them, and more.

Command Window Run MATLAB language statements.

Current Directory
Browser

View files, perform file operations such as open, find files and file
content, and manage and tune your files.

Editor Create, edit, debug, and analyze M-files (files containing MATLAB
language statements).

Figures Create, modify, view, and print figures generated with MATLAB.

File Comparisons View line-by-line differences between two files.

Help Browser View and search the documentation and demos for all your
MathWorks™ products.

Profiler Improve the performance of your M-files.

Start Button Run tools and access documentation for all your MathWorks
products, and create and use shortcuts for MATLAB.

Variable Editor View array contents in a table format and edit the values.

Web Browser View HTML and related files produced by MATLAB.

Workspace Browser View and make changes to the contents of the workspace.

2-5

2 Desktop

Arranging the Desktop

In this section...

“Modifying the Desktop Configuration” on page 2-6

“Opening and Arranging Tools” on page 2-6

“Opening and Arranging Documents” on page 2-8

“Saving Desktop Layouts” on page 2-13

See also “Examples of Desktop Arrangements” on page 2-15.

Modifying the Desktop Configuration
You can modify the desktop configuration to best meet your needs. Because
the desktop uses many standard graphical user interface (GUI) conventions,
it is easy to learn about arranging the desktop just by using it.

The desktop manages tools differently from documents. The Command
History and Editor are examples of tools, and an M-file is an example of a
document, which appears in the Editor tool.

Opening and Arranging Tools
This table summarizes actions for arranging desktop tools. For further
information, click the “see more details online” links, which you can access in
the HTML documentation (in the Help browser or on the Web site).

Tool Action Steps to Perform

Opening desktop tools To maximize your work area, keep open only those tools you use. To
open a tool, select the tool name from the Desktop menu. Opened
tools have a check mark before them in the menu. The tool appears
in the location it occupied the last time it was open. The sizes of
other tools adjust to accommodate the newly opened tool. See more
details online.

2-6

Arranging the Desktop

Tool Action Steps to Perform

Navigating among
desktop tools

The Window menu displays all open desktop tools and documents,
as well as opened tools for other MathWorks™ products. Select an
entry in the Window menu to go directly to that tool or document.
Another way to access an undocked desktop tool is by selecting its
entry in the Microsoft® Windows® task bar, or the equivalent for
your platform. See also “Keyboard Shortcuts” on page 2-40 and more
details online.

Closing desktop tools To close a desktop tool, select the item in the Desktop menu, which
clears the check mark in the menu and closes the tool. Or click the
Close box (X) in the title bar for the tool, or select File > Close for
the tool. See more details online.

Resizing tools To resize tools in the MATLAB® desktop, drag the separator bar,
which is the bar between tools. You can hide the title bars for tools
in the desktop so the tools use less space—select Desktop > Titles,
and then hover over a title bar to see a ToolTip containing the name
of the tool. See more details online.

Moving tools within the
desktop

To move a tool in the MATLAB desktop, drag the title bar of the tool
toward where you want the tool to be located. As you drag the tool,
an outline of it appears. When the outline nears a position where
you can keep it, the outline snaps to that location. Release the mouse
button. The tool stays at the new location. Other tools in the desktop
resize to accommodate the new configuration. The inside edges of
the desktop container and tools all act as if they are “sticky,” so you
can position a tool along any inside edge. See more details online.

Moving tools out of the
desktop (undocking)

Move a tool out of the desktop to make it larger or easier to
work with. To move a tool outside the MATLAB desktop (called
undocking), select the tool to make it active, and then select
Desktop > Undock > Toolname. The tool appears outside the
MATLAB desktop and an entry for it appears in the Windows task
bar or the equivalent for your platform. Tools within the desktop
resize accordingly. Another way to undock is by using the Undock
button in the tool’s title bar. See more details online.

Moving tools into the
desktop (docking)

To move a tool that is outside the MATLAB desktop into the
desktop, click the Dock button in the tool’s menu bar, or select
Desktop > Dock Toolname. See more details online.

2-7

2 Desktop

Tool Action Steps to Perform

Grouping tools together You can group tools so that they overlay each other in the MATLAB
desktop. To group tools together, drag the title bar of one tool in the
desktop on top of the title bar of another tool in the desktop. To make
a tool active, click its name in the title bar. See more details online.

Maximizing tools in the
desktop

To resize the active tool so it occupies the entire MATLAB
desktop, double-click the tool’s title bar; to return to the layout
prior to maximizing, double-click the title bar of the maximized
tool. Alternatively, use the menus: select Desktop > Maximize
Toolname. To return to the layout prior to maximizing, select
Desktop > Restore Toolname. You can also use the Maximize
button and Restore button in the tool’s title bar. This feature is
not supported on Apple® Macintosh® platforms.

Minimizing tools in the
desktop

You can minimize any tool in the desktop, which creates a button
along an edge of the desktop that represents the tool. Select
Desktop > Minimize Toolname. You can also use the Minimize
button in the tool’s title bar. The tool’s button appears along the
edge indicated by the minimize arrow in the menu item or on the
button. To move the tool’s button to a different edge, right-click the
button, and from the context menu, select an edge. To view or use
a minimized tool, hover over or click the button—this temporarily
opens the tool in the desktop. Once you are finished using the tool,
click the button or another tool and the tool is again shown only as
a button along the edge. To return the tool to the desktop layout
position it occupied before being minimized, double-click the button.
Alternatively, restore it by right-clicking the button and selecting
Restore > Toolname, or use the Restore button in the tool’s title
bar. This feature is not supported on Macintosh platforms.

Opening and Arranging Documents
Open a document, such as an M-file or a variable, and it opens in its
tool, for example, the Editor or Variable Editor. The following example
illustration shows a desktop arrangement that includes Editor and Variable
Editor documents. See instructions in “Summary of Actions for Arranging
Documents” on page 2-11.

2-8

Arranging the Desktop

Example of Documents in the Desktop
Some common actions for working with documents in the desktop are

• Use the document bar to go to open documents.

• Use the Window menu or equivalent toolbar buttons to position documents.

• Close or undock a tool, including all documents in the tool.

• Undock a document from its tool.

• Use the document Close box with the Ctrl key to close the document
without saving it and without displaying the unsaved document dialog box.

See also “Examples of Desktop Arrangements” on page 2-15.

2-9

2 Desktop

+��
��������
%����� ����
����
����������

(
	�)�����
	���	�
��%����
 ���������
���
�

,��	�	��������������	��	�����
���
���	� ����������	����

(
����������)������	"�����
�-#�	��.�
	��
��	� ��

����������������

+����)���������
�������
�����
���
���������

2-10

Arranging the Desktop

Summary of Actions for Arranging Documents
This table summarizes actions for arranging documents in their tool. For
further information, click the click the “see more details online” links, which
you can access in the HTML documentation (in the Help browser or on the
Web site).

Document Action Overview

Opening
documents

When you open a document for use with MATLAB, it opens in the
associated tool. If the tool is not already open, it opens when you open the
document and appears in the position it occupied when last used. Figures
open undocked, regardless of the last position occupied.

How to open a document depends on the document type:

• M-file: Select File > Open and select the M-file. It opens in the Editor.

• Workspace variable: In the Workspace browser, double-click the
variable. It opens in the Variable Editor.

• HTML file: In the Current Directory browser, double-click the file. It
opens in the MATLAB Web browser.

• Figure: Type plot or use another graphics function. The plot appears
in a figure window.

There are many additional ways to open documents. See more details
online.

2-11

2 Desktop

Document Action Overview

Navigating among
documents — the
document bar

When more than one document is open within a tool, each document is
either maximized (the default), or arranged so that multiple documents
are visible at once. Click a document that is in view to make it the active
document. See also “Keyboard Shortcuts” on page 2-40.

Use the document bar to go to a document that is open but not in view.
The names of all open documents appear in the document bar. Select a
document name in the document bar to make that document active. To
show the document bar if it is not open, select Desktop > Document
Bar > Bar Position and select the position for it, for example, Right. See
more details online.

Entries for undocked documents appear in the Windows task bar, or the
equivalent for your platform. Click the task bar entry for a document to
make that document active.

Positioning,
moving, and
resizing documents

To position open documents within their tool, select an arrangement from
the Window menu when the tool is active, or by using the equivalent
toolbar button for Maximize, Float, Left/Right Tile, Top/Bottom
Tile, and Tile. You can also define a specific grid arrangement using
Window > Tile.... On the Macintosh platform, the tile option might not be
available in the Window menu so use the Tile button instead.

With the tile arrangements, you refine the document position by moving
the pointer over the handle () on the separator bar. A Close box then
appears. When you click the Close box between two open documents, both
documents stay open, but one moves on top of the other. When you click
the Close box between a document and an empty tile, the empty tile closes.

To move a document in a tiled arrangement, drag the title bar of a
document to another tile. To resize tiled documents, drag the separator
bar between the documents. See also the Editor’s “Split Screen Display”
on page 6-39, which allows you to view two different parts of the same
file simultaneously.

To move or resize maximized documents, you move or resize their tool.

See more details online.

2-12

Arranging the Desktop

Document Action Overview

Closing documents To close a document, click the Close box in the document’s title bar.
After closing all the documents in a tool, the tool remains open with no
documents in it. If you select the Close box for the tool, all documents
in that tool close.

In the Editor, when you close a file that has unsaved changes, a prompt
appears asking if you want to save the document. To close a file without
saving changes and without seeing the save prompt, use Ctrl when you
click the document’s Close box. See more details online.

Moving documents
and tools out
of the desktop
(undocking)

To undock all documents in a tool from the desktop, click the Undock
button in the tool’s title bar. The tool and its documents move outside of
the desktop. See more details online.

To undock a document from its tool, click the Undock button for the
document. The Undock button is either in the document’s title bar, menu
bar, or toolbar, depending on the document type and whether or not the
document is within the desktop or is in its tool outside of the desktop.

Undocked documents have entries in the Windows task bar (or the
equivalent for your platform).

Docking documents
and tools

When you dock a document, it moves to the position in the tool that it
occupied before you undocked the document. To dock a document, click the
Dock button in the document’s menu bar. See more details online.

Grouping
documents in a
tool outside the
desktop

To group all of the documents for a tool together outside of the desktop,
undock the tool from the desktop, not just the documents.

If you have already undocked all of the documents and closed the empty
tool that had contained them, select Desktop > Dock All in Editor, for
example. This moves all the documents into the tool in the desktop. Then
undock the tool.

Saving Desktop Layouts
When you end a session, MATLAB saves the desktop layout. The next time
you start MATLAB, the desktop is restored to the way you last had it.

To use a predefined layout, select Desktop > Desktop Layout, and choose a
configuration. See more details in the online documentation.

2-13

2 Desktop

To save your own layouts for later reuse, select Desktop > Save Layout
and provide a name. To reuse a saved layout, select the name from
Desktop > Desktop Layout. See more details in the online documentation.

2-14

Examples of Desktop Arrangements

Examples of Desktop Arrangements

In this section...

“About These Examples” on page 2-16

“Tool Outside of Desktop and Other Tools Grouped Inside Desktop Example”
on page 2-16

“Maximized Tool in Desktop Example” on page 2-18

“Minimized Tools in Desktop Example” on page 2-20

“Tiled Documents in Desktop Example” on page 2-24

“No Empty Document Tiles Example” on page 2-26

“Maximized Documents Outside of the Desktop Example” on page 2-27

“Floating (Cascaded) Figures in Desktop Example” on page 2-28

“Undocked Tools and Documents Example” on page 2-30

2-15

2 Desktop

About These Examples
Scan the illustrations in the following examples for a desktop arrangement
similar to what you want, and then follow the brief instructions to achieve the
arrangement. There are many different ways to accomplish the result; these
instructions present just one way. The instructions might not apply exactly,
depending on how your desktop looks before you start.

Tool Outside of Desktop and Other Tools Grouped
Inside Desktop Example
This example shows two ways you can increase the size of a tool. One way
is to move a tool outside of the desktop to increase its size. Here, the Help
browser was moved outside of the desktop and made larger. To move a tool
outside of the desktop, click the Undock button in the tool’s title bar when
the tool is in the desktop.

Another way to increase the size of a tool is by grouping tools together inside
the desktop, and then accessing a tool via the tool’s name in the title bar. Here
the Command Window, Command History, Workspace browser, and Current
Directory browser are grouped together. To achieve this, drag the title bar of
one tool on top of the title bar of the tool(s) you want to group it with.

2-16

Examples of Desktop Arrangements

/�
��%�����	�������)����������)���������!	��
��
� ���������!	��	� �����������	���������������

�������
��	���������)������� �����
�� ��������!	�	� ���
� ��������
��)	� ��	����� 	!������
�
(
	�)������
0�������	�����
�	�
��%�������)����������
����	!��

2-17

2 Desktop

Maximized Tool in Desktop Example
This example shows a way you can temporarily increase the size of a tool so
that it occupies the entire area of the desktop. In this example, the Command
Window in the default desktop layout is temporarily maximized by clicking
the Maximize button in the tool’s title bar.

'����
�����)����
������
���	�	"�������
����������
�������(�������1	����
���	�������	���������

�����������)��������

In this example, the maximized Command Window is being returned to its
size and position in the default desktop layout by clicking the Restore button

in the title bar.

2-18

Examples of Desktop Arrangements

���	�	"��������(�������1	��������������	���������

����)��������
2����	� �����(�������1	�����������	�����	����	 	��
��	"�����

����	���	���������)����

2-19

2 Desktop

Minimized Tools in Desktop Example
Minimize a tool in the desktop to give the remaining desktop tools more space
in the desktop. Minimizing is available on Microsoft® Windows® and The
Open Group UNIX® platforms. In this example, the Command History in the
default layout is being minimized to the left edge of the desktop.

�	�	�	"���
���
����
�����
������
(������
/	����
�	�����

In this illustration, the Command History has been minimized and appears
as a button along the left edge.

2-20

Examples of Desktop Arrangements

1�����	�	�	"���������
��������������(�������1	�����	����	�������
��
	������������%����%����������������)����%����

This illustration shows the minimized Command History being temporarily
opened, as a result of clicking or hovering over the button.

2-21

2 Desktop

/�!���!�����
	�)�����%������������	�	�	"������
����������	
��!	����������������
�
�������
�	��������	
���	��
��������	
�������
��������������
�
������������
�%��������	�	�	"���� �	��

After using the Command History and clicking the button, or moving on to
another tool, the Command History again becomes minimized as a button
along the left edge.

This illustration shows the Command History being returned to the position
and size it occupied in the desktop prior to being minimized by clicking the
Restore button .

2-22

Examples of Desktop Arrangements

3������%������������	�	�	"������
��	 ��4�
	�)�����������������������������
����	
����
�
�������
�������������	"���������	�	���	������	���������)����%�����	�������	�	�	"���

2-23

2 Desktop

Tiled Documents in Desktop Example
When you open a document (for example, an M-file), it also opens the tool (for
example, the Editor) if the tool is not already opened. Subsequent documents
of the same type open in the tool and you can then arrange the documents
within the tool. You can move a document on top of another document, so
that the one on top hides the one(s) beneath it, or you can show multiple
documents at once. This example shows two M-files side-by-side, as a result of
selecting Window > Left/Right Tile (or the toolbar button).

When tools and documents are docked, you might want to save space by
hiding toolbars and document bars. In this illustration, the desktop shortcuts
toolbar is hidden. Select Desktop > Toolbar name to hide (or show) a
toolbar. To see or move the document bar, select Desktop > Document
Bar > Bar Position, and choose its location, for example, Top.

2-24

Examples of Desktop Arrangements

����������������
%��	���	�����
�������������%��	������������
�� ���������#�	���

$�
������%��������������
	��
������ ����������������
������������52	 ����	
��

2-25

2 Desktop

No Empty Document Tiles Example
To see more than two documents at once, select the Tile button and move the
pointer across the gird that appears to select the number of tiles you want.
The following “Before” illustration has four tiles, but only three documents
are open. (The empty tile is gray.) You can move a document to any empty tile
by dragging its title bar to the new location. To close an empty tile, position
the pointer over the handle on the separator bar. It becomes a Close box, as
shown here, which you click to close the empty tile. After clicking the Close
box, the empty tile closes and the neighboring document expands as shown in
the following “After” illustration. Similarly, click the Close box between two
tiles containing documents, and one document becomes hidden. Note that
preferences to show line numbers and M-Lint indicators have been cleared to
provide more horizontal space.

���

�	
����������
�������������
�	��������	
��%������

(
���������������	
�
��	� ���������
�
���������������%��

���
�

����������
�
������	
���

2-26

Examples of Desktop Arrangements

Maximized Documents Outside of the Desktop
Example
This example illustrates a way to provide a large area for multiple documents,
in this case, M-files maximized in the undocked Editor.

Some common actions for working with documents outside of the desktop are

• Group all Editor documents together — select Desktop > Dock All in
Editor from any Editor document.

• Move all Editor documents outside of the desktop — select
Desktop > Undock Editor when the Editor is the active window.

• Make a document occupy the full area in the Editor — click the Maximize
button in the Editor toolbar, or select Window > Maximize.

• Display the cell toolbar — select Desktop > Cell Toolbar. This menu item
is available only when the current document is an M-file.

2-27

2 Desktop

• Access any document in the Editor using the document bar. To show
the document bar on the left side of the Editor, select Desktop > Bar
Position > Document Bar > Left from the Editor.

Floating (Cascaded) Figures in Desktop Example
This example illustrates multiple figures in the desktop. By default, figures
open outside the desktop. Click the Dock button in each figure’s menu bar to
move the figures into the desktop.

You can float (also called cascade) the figures by selecting Window > Float, or
clicking the Float button . To get even more screen area for the figures, hide
the document bar as shown in this example — select Desktop > Document
Bar > Bar Position > Hide.

2-28

Examples of Desktop Arrangements

'��)��	 ����	���������)�����������������
�������	��������� ��������	��	�����	 ���� ����
�������������%��	���	�����

2-29

2 Desktop

Undocked Tools and Documents Example
You can use tools and documents outside of the desktop. One way to
achieve this is to first undock the tool from the desktop by selecting
Desktop > Undock Toolname. Then undock documents from the undocked
tool by selecting Desktop > Undock Documentname from the tool. If you
undock all documents from a tool, an “empty” tool window remains.

In this example, one of the Editor documents, collatz.m, includes the
name of the tool with it; the other Editor document, lengthofline.m, does
not. Contrast this with the Variable Editor documents, where neither
document window includes the name of the tool. This is because the Variable
Editor was undocked from the desktop, the variables were undocked from
the Variable Editor, and the “empty” Variable Editor window was closed.
The tool’s undocked documents remain open. If you closed the Editor, the
lengthofline.m document would remain open. To close all undocked
documents and their tools at once, select Window > Close All Documents
from an undocked document window.

2-30

Examples of Desktop Arrangements

2-31

2 Desktop

MATLAB® Shortcuts — Easily Run a Group of Statements

In this section...

“What Is a Shortcut?” on page 2-32

“Examples of Useful Shortcuts” on page 2-32

“Creating Shortcuts” on page 2-33

“Running Shortcuts” on page 2-35

“Shortcuts Toolbar” on page 2-35

“Organizing and Editing Shortcuts” on page 2-38

What Is a Shortcut?
A MATLAB® shortcut is an easy way to run a group of MATLAB language
statements that you use regularly. First you create a shortcut that contains
all the statements. Then you select and run the shortcut to execute all
the statements it contains. Create, run, and organize shortcuts from the
Start > Shortcuts menu or the desktop Shortcuts toolbar.

Differences Between Shortcuts and M-Files
A shortcut is like an M-file script, but unlike an M-file, a shortcut does not
have to be on the search path or in the current directory when you run it. In
addition, you can run the shortcut by selecting it from the Start button or
desktop Shortcuts toolbar, which are readily accessible.

Although shortcuts run MATLAB language statements, they are not M-files
and are not stored as M-files.

Examples of Useful Shortcuts
These are some examples of useful types of shortcuts:

• If you frequently run the same group of functions, consider creating a
shortcut for them. An example of this is setting up your environment
when you start working if you do not use a startup file, or if there are
statements you do not want to include in the startup file. Some users

2-32

MATLAB® Shortcuts — Easily Run a Group of Statements

create a shortcut for even a single function they use frequently, such as
clc to clear the Command Window.

• Create a shortcut to set the same properties for figures you create, such as
adding a legend and setting the background color.

• Create a shortcut for a long statement, such as changing the current
directory (cd) when the pathnames are long.

• Create a shortcut for a statement you do not easily remember but need to
use.

Creating Shortcuts
This is an example of a shortcut you might create for a project you work on,
the Sea Temperature project. When you work on that project, you might
want to set up your environment in a certain way by running a series of
MATLAB language statements. You create a shortcut called sea_temp_env,
which contains the statements. Then when you work on the project, you
run the shortcut to execute all of the statements with a single click. The
statements are

more on
format long e
cd d:/mymfiles/sea_temp_project
clear
workspace
filebrowser
clc

To create a shortcut, perform the following steps:

1 From the Start button, select Shortcuts > New Shortcut.

The Shortcut Editor dialog box appears.

2 Create the shortcut by completing the dialog box.

a Provide a shortcut name in the Label field, for example,
sea_temp_environment.

b Put the statements in the Callback field as shown in the following
illustration. Either type them in, or copy and paste or drag them from a

2-33

2 Desktop

desktop tool. Edit the statements as needed. The field uses the Editor
preferences for key bindings, colors, and fonts. Note that if you copy
the statements from the Command Window, the prompt appears in the
shortcut, but MATLAB removes the prompt when you save the shortcut.

c Assign a category, which is like a directory for organizing shortcuts.
Specify sea_temp_project. To add the shortcut to the shortcuts toolbar,
select the Toolbar Shortcuts category.

d Use the default shortcuts icon , or select your own.

e Click Save. MATLAB automatically removes any Command Window
prompts (>>) in the Callback field upon saving the shortcuts.

3 MATLAB adds the shortcut to the Shortcuts entry in the Start button,
and to the Shortcuts toolbar, if you selected that Category.

After creating a shortcut, run it by selecting it from its category in the
Start button. You can also run it from the Shortcuts toolbar if you selected
the Toolbar Shortcuts category.

MATLAB maintains shortcut information in the file shortcuts.xml. Type
prefdir, and MATLAB displays the location of the file. Most likely, you
will not need to access this file, as MATLAB updates the file automatically.

2-34

MATLAB® Shortcuts — Easily Run a Group of Statements

For more information on the options in the Shortcut Editor dialog box, click
the Help button.

Additional Ways to Create Shortcuts
You can also use these methods to create shortcuts:

• Add shortcuts to and run them from the desktop Shortcuts toolbar. See
“Shortcuts Toolbar” on page 2-35.

• From the Command History window, create a shortcut by selecting
MATLAB language statements, right-clicking, and selecting Create
Shortcut from the context menu. By default, shortcuts created from
the Command History window are assigned to the Toolbar Shortcuts
category, meaning they will appear on the Shortcuts toolbar.

• From the Help browser, select Favorites > Add to Favorites, complete
the Favorites Editor dialog box, and the shortcut appears in the shortcuts
Help Browser Favorites category. You can also access Help Browser
Favorites shortcuts from the Help browser Favorites menu.

• Drag statements from a desktop tool, such as the Command History, onto
the Start button.

Running Shortcuts
To run a shortcut, select the shortcut name, for example,
sea_temp_environment, from the Start > Shortcuts menu or from one of
its category submenus. All of the statements in the shortcut Callback field
execute. It is as if you ran those statements from the Command Window,
although they are not reflected in the Command History window.

If you added a shortcut to the Shortcuts toolbar, you can run it by clicking its
icon on the shortcuts toolbar.

Shortcuts Toolbar
The Shortcuts toolbar is an alternative to creating and running
shortcuts via the Start button. To show or hide the shortcuts toolbar, use
Desktop > Shortcuts Toolbar. To create and run shortcuts via the desktop
Shortcuts toolbar, perform these steps:

2-35

2 Desktop

1 Select statements from the Command History window, the Command
Window, or an M-file.

2 Drag the selection to the desktop Shortcuts toolbar. The following
illustration shows two statements being dragged from the Command
Window.

3 The Shortcut Editor dialog box appears. The Callback field contains the
selected statements, which you can edit as needed. If prompts (>>) from the
Command Window appear, note that MATLAB automatically removes them
when you save the shortcut. The Category field is Toolbar Shortcuts,
which you must retain in order for the shortcut to appear on the toolbar.

Provide the Label, select an Icon, and click Save.

The shortcut icon and label appear on the toolbar. If you have more
shortcuts on the toolbar than can be displayed at once, use the drop-down
list to access all of them. For more information, click the Help button in
the Shortcut Editor dialog box.

2-36

MATLAB® Shortcuts — Easily Run a Group of Statements

4 Click the icon on the Shortcuts toolbar to run the shortcut. You can also
run the shortcut from the Start button by selecting it in the Toolbar
Shortcuts category.

(
	�)�����������������	��
2	 ��4�
	�)�������������������
��������	��	��

You can also add a shortcut to the desktop Shortcuts toolbar by right-clicking
the toolbar and selecting New Shortcut. Complete the resulting Shortcut
Editor dialog box. Assuming you maintain the Toolbar Shortcuts category,
the shortcut appears on the toolbar. To change the order of the shortcuts on
the toolbar, select Start > Shortcuts > Organize Shortcuts and move the
shortcuts within the Toolbar Shortcuts category.

How to Add and What’s New Shortcuts
The Shortcuts toolbar includes two shortcuts provided with MATLAB. The
How to Add shortcut provides help about shortcuts and adding them to the
Shortcuts toolbar. What’s New displays the Release Notes documentation.

To remove the How to Add or What’s New shortcut from the Shortcuts
toolbar, choose a different category. For instructions, see “Organizing and
Editing Shortcuts” on page 2-38.

If you do not want to keep these shortcuts, remove each one by right-clicking
its toolbar shortcut button and selecting Delete from the context menu. Click
OK in the confirmation dialog box to remove the shortcut.

Shortcut Labels on Toolbar
You can hide the shortcut labels on the toolbar. Right-click in the Shortcuts
toolbar. From the context menu, select Show Labels, which clears the check
mark next to the item. The shortcut icons appear on the toolbar without labels.
When you move the mouse over a shortcut icon, its label appears as a ToolTip.

2-37

2 Desktop

To make labels display in the toolbar, right-click the toolbar and select Show
Labels, which adds a check mark next to the item and displays the labels.

Organizing and Editing Shortcuts
To create categories for shortcuts, and to move, edit, and delete shortcuts,
perform these steps:

1 Select Shortcuts > Organize Shortcuts from the Start button.
Alternatively, access it via the shortcuts toolbar context menu.

The Shortcuts Organizer dialog box appears. When a shortcut category is
selected in the dialog box, the Edit Shortcut button is replaced by the
Rename Category button.

2 Use the buttons in the dialog box to edit and organize shortcuts and
categories. You can also right-click an item and select an action from the
context menu.

Changes take effect immediately.

3 Click Close.

2-38

MATLAB® Shortcuts — Easily Run a Group of Statements

For more information about using the Shortcuts Organizer dialog box, click
the Help button.

2-39

2 Desktop

Keyboard Shortcuts

In this section...

“Keyboard Shortcuts (Accelerators or Hot Keys) and Mnemonics” on page
2-40

“Go To First Letter (Type Ahead) Feature in Desktop Tool Lists” on page
2-42

“Default Button and Active Button (Button with Focus)” on page 2-42

Keyboard Shortcuts (Accelerators or Hot Keys) and
Mnemonics
You can access many of the menu items using shortcut keys (sometimes called
accelerators or hot keys) for your platform. For example, use the Ctrl+X
shortcut to perform a cut on Microsoft® Windows® platforms. Many of the
menu items show the shortcuts. Additional standard shortcuts for your
platform usually work but only one is listed with each menu item.

See additional shortcuts for the Command Window at “Keyboard Shortcuts
in the Command Window” on page 3-25, and for the Editor at “Keyboard
Shortcuts in the Editor” on page 6-70.

Instructions in the documentation specify shortcuts using the key convention
for Windows platforms, Ctrl+. With key bindings for Apple® Macintosh®

platforms selected, you can use the Command key instead of the Ctrl key. On
the Macintosh platform, to make full use of all keyboard shortcuts, you need
to select the Full Access system preference for Keyboard Shortcuts.

You can also use mnemonics to access menu items and buttons, such as Alt+F
to open the File menu. This is not supported on the Macintosh platform.
Mnemonics are listed with the menu item or button. For example, on the File
menu, the F in File is underlined, which indicates that Alt+F opens the
menu. In the Profiler, the R in the Run this code toolbar field is underlined,
indicating that Alt+R moves the cursor to this field.

Note that some versions of the Windows operating system do not automatically
show the mnemonics on the menu. For example, you might need to hold down
the Alt key while the tool is selected to see the mnemonics on the menus and

2-40

Keyboard Shortcuts

buttons. Use the Windows Control Panel to set preferences for underlining
keyboard shortcuts. See the Windows documentation for details.

Following are some general shortcuts that are not listed on menu items.

Key Result

Enter The equivalent of double-clicking, Enter performs the default action
for a selection. For example, press Enter while a statement in the
Command History window is selected to run that statement in the
Command Window.

For buttons in tools and dialog boxes, Enter executes the default button
(the button with a border around it). If there is no default button, press
the space bar to execute the active button (the button with a dotted
outline inside it). See “Default Button and Active Button (Button with
Focus)” on page 2-42 for an illustration.

Esc (escape) Cancels the current action. For example, if you select the Edit menu,
the menu items display. Pressing Esc retracts the menu items. Pressing
Esc in a dialog box is the same as selecting the Cancel button.

Tab Advances to the next button or field in a tool or dialog box.

In the Command Window, completes a statement if the tab completion
preference is selected.

Space bar For buttons in tools and dialog boxes, activates the active button. See
“Default Button and Active Button (Button with Focus)” on page 2-42
for an illustration of selecting default and active buttons using keys.

+ or - or * on numeric
keypad

Use these keys on the numeric keypad to expand and collapse items in
tree views. The Help browser Help Navigator pane and the Command
History window use tree views. Use + to expand the selected item,
use - to collapse the selected item, and use * to recursively expand it,
meaning open all items contained in the selected item.

Alt+S Displays the Start button menu (except on Macintosh platforms).

Alt+Y Provides access to the current directory field in the toolbar (except on
Macintosh platforms).

Ctrl+Tab Moves to the next open tool in the desktop, or to the next open group of
tools tabbed together.

2-41

2 Desktop

Key Result

Ctrl+Shift+Tab Moves to the previous open tool or group of tabbed tools in the desktop.

Ctrl+Page Down Moves to the next tool within a group of tools tabbed together. In a
group of documents, moves to next document.

Ctrl+Page Up Moves to the previous tool within a group of tools tabbed together. In a
group of documents, moves to previous document.

Ctrl+F6 Moves to the next tool or document (only for Windows and Sun
Microsystems™ Solaris™ platforms).

Ctrl+Shift+F6 Moves to the previous tool or document (only for Windows and Solaris
platforms).

Alt+F4 Closes the desktop and consequently, shuts down the MATLAB®

program. Or outside the desktop, closes the active window (except on
Macintosh platforms).

For additional shortcuts available in the various desktop tools, see the
documentation for each tool. For example, see “Keyboard Shortcuts in the
Command Window” on page 3-25 and “Keyboard Shortcuts in the Editor”
on page 6-70.

Go To First Letter (Type Ahead) Feature in Desktop
Tool Lists
In the Current Directory browser and Command History window, you can
type a letter to move directly to the next item in the list that starts with the
letter you typed. This is sometimes referred to as type ahead.

Default Button and Active Button (Button with Focus)
These illustrations demonstrate the default versus active button in a dialog
box.

2-42

Keyboard Shortcuts

2-43

2 Desktop

Other Desktop Features

In this section...

“Start Button for Accessing Tools” on page 2-44

“Menus and Context Menus” on page 2-46

“Toolbars” on page 2-47

“Status Bar” on page 2-49

“Sizing, Arranging, and Sorting Columns in Tools” on page 2-50

“Selecting Multiple Items” on page 2-51

“Cut, Copy, Paste, and Move” on page 2-51

“Macintosh® Platform — Differences in the MATLAB® Desktop” on page
2-52

“Printing and Page Setup Options for Desktop Tools” on page 2-53

“Web Browser” on page 2-56

“Accessing The MathWorks on the Web” on page 2-58

“Managing Your License” on page 2-59

“Check for Updates” on page 2-59

“Terms of Use and Patents” on page 2-60

Start Button for Accessing Tools
The MATLAB® Start button provides easy access to tools, demos, and
documentation for all your MathWorks™ products. From it, you can also
create and run MATLAB shortcuts, which are groups of MATLAB language
statements.

Using the Start Button

1 Click the Start button to view a menu of product categories and desktop
tools installed on your system. As an alternative, press Alt+S to view the
Start button contents (except on Apple® Macintosh® platforms). In the
following illustration, MATLAB is selected.

2-44

Other Desktop Features

2 From the menu and submenu items, select an item to open it. Use the icons
to quickly locate a type of product or tool — see the following description
of icons.

For example, select Start > MATLAB > GUIDE (GUI Builder) to open
that tool.

Icons in the Start Button. Icons help you quickly locate a particular type of
product or tool. This table describes the action performed when you select an
entry with one of these icons in the Start button.

2-45

2 Desktop

Icon Description of Action When Opened

Documentation for that product opens in the Help browser.

Demos for the product are listed in the Help browser
Demos pane.

Selected tool opens.

Block library opens.

Document opens in your system Web browser.

Customizing the Start Button
You can add your own toolboxes to the Start button. Select Start > Desktop
Tools > View Source Files to open the Start Button Configuration Files
dialog box. For more information, click the Help button in the dialog box.

Menus and Context Menus

Merged Menus
When you use a tool in the desktop, its menu appears at the top of the
desktop. When you work in a different tool in the desktop, you still use the
menu at the top of the desktop, but the menu content changes to support that
tool. When you undock a tool from the desktop, access its menu at the top
of the undocked tool.

Context Menus
Many of the features in MATLAB desktop tools are available from context
menus, also known as pop-up or right-click menus. To access a context menu,
right-click a selection or an area, or press Ctrl+Shift+F10. The context menu
for the selection or tool appears, presenting the available actions. For example,
following is the context menu for a selection in the Command History window.

If a context menu does not appear, try right-clicking in a different part of
the tool. When a context menu item is gray, the item does not apply to the
current selection or area.

2-46

Other Desktop Features

Toolbars
The toolbar in the desktop provides easy access to frequently used operations.
Other tools also provide toolbars.

(����������	
�
	��#�	���

3����$	��
	�)
�	%��������6
�!�	
�%
��	�
$	��
	�)�	��	����

���

(������	������
������� ��
�����������
����	���
��%��������	����� ���������
�!�
�

$�
��������!	���
�4������������	������������� �����	��

These are the major toolbar features:

• ToolTips — Position the pointer over a button for a second or two and a
ToolTip appears that describes the item.

2-47

2 Desktop

• Customizing — You can customize the toolbar to show or remove controls,
and to rearrange the controls. Use File > Preferences > Toolbars; for
details, click Help in the resulting dialog box.

• Toolbars in Tools — Some tools also have their own toolbars, which are
located within the tool’s own window. For example, the Current Directory
browser has its own toolbar. When you undock one of these tools, the
undocked tool includes the toolbar.

• Hiding Toolbars — To hide a toolbar, or to show it again after hiding it, use
the appropriate toolbar item in the Desktop menu. As an alternative,
right-click a toolbar or menu bar and select a toolbar from the context
menu to hide or show it. For figure windows, use the toolbar item in its
View menu.

• Repositioning Toolbars — If there is more than one toolbar in a tool, you
can move the position of the toolbars. For example, in the Editor, by default,
the Editor toolbar is above the cell mode toolbar. To change the position of
a toolbar, grab the toolbar anchor (at the left end) and drag the toolbar to
a different location.

�����!�������
%��
 �%��������
%�������
������ ��������
%�
���������
����	���

/��������
(�

���������
%�����
%������!���%��������
#�	������
%��

(�

���������
%� #�	������
%�

See also the “Shortcuts Toolbar” on page 2-35.

Current Directory Field
The current directory field in the desktop toolbar shows the current working
directory in MATLAB. You can change the current directory using this field
and any of these methods:

2-48

Other Desktop Features

• Type the new current directory directly in the field.

• Use the drop-down list to change to a previously used current directory. To
specify the number of entries maintained each session, use the History
preference you access via File > Preferences > Current Directory.

• Use the Browse for folder button ... to select a new current directory.

• Use the Go Up One Level button to move the current directory up one
level.

The same current directory field also appears in the Current Directory
browser when the Current Directory browser is undocked from the desktop.
Use the Current Directory browser to perform many additional file operations.
For more information, see “File Management Operations” on page 5-45.

Status Bar
Along the bottom of the desktop is the status bar. It displays messages, such
as when MATLAB is busy executing statements or when the Profiler is on.
Some tools, such as the Editor, display additional status information, such
as the current line number. Not all status information appears on the status
bar — many MATLAB functions and tools provide status information that is
not reported to the status bar.

You can construct your own functions to provide status information. See the
timer function, and search for other specific terms describing the status of
interest.

2-49

2 Desktop

Sizing, Arranging, and Sorting Columns in Tools
Some desktop tools present information in columns, such as the Current
Directory browser.

To change the column width, drag the separator bar between two column
headings in a tool. When a column is too narrow to show all the information
in it, position the pointer over an item and the full value for that item displays
like a ToolTip.

To rearrange the columns in a tool, drag the column header to a different
position. To sort the information by a particular column, click the column
header. For example, in the Current Directory browser, click the Last
Modified date to sort the items in date order. Some columns also allow you
to reverse the sort order by clicking the column header again. A small gray
arrow in the header indicates the current sort order — for example, an up
arrow in the Last Modified Date column header indicates an ascending sort
order, meaning the oldest files are at the top of the list.

2-50

Other Desktop Features

Selecting Multiple Items
In many desktop tools, you can select multiple items and then select an action
to perform on all the selected items. Select multiple items using the standard
practices for your platform.

For example, if you run on a Microsoft®Windows® platform, do the following to
select multiple items:

1 Click the first item you want to select.

2 Hold the Ctrl key and then click the next item you want to select. Repeat
this step until you have selected all the items you want. To select contiguous
items, select the first item, hold the Shift key, and then select the last item.

Now you can perform an action on the selected items, such as delete.

To clear one of multiple selected items, use Ctrl+click. To clear all selected
items, click outside of the selection.

Cut, Copy, Paste, and Move
You can cut and copy a selection from a desktop tool to the clipboard and then
paste it from the clipboard into another tool or application. Use the Edit
menu, toolbar, context menus, or standard keyboard shortcuts. For example,
you can copy a selection of statements from the Command History window
and paste them into some MATLAB desktop tools.

Use Paste to move items copied to the clipboard from other applications.
The Paste to Workspace item in the Edit menu opens the selection on the
clipboard in the Import Wizard. You can use this to copy data from another
application, such as the Microsoft® Excel® application, into MATLAB. For
details, see the “Using the Import Wizard”.

When editing in the Command Window and Editor, to move text to a new
location, select the text and drag it. To copy text, press Ctrl and drag the
selected text to the new location.

To undo the most recent cut, copy, or paste command, select Undo from the
Edit menu. Use Redo to reverse the Undo. For some tools, you can undo
multiple times in succession.

2-51

2 Desktop

See also the clipboard function.

Drag and Drop
You can also move or copy a selection from one tool to another by dragging the
selection. For example, make a selection in the Command History window
and drag it to the Command Window, which pastes it there. Edit the lines
in the Command Window, if needed, and then press the Enter key to run
the lines from the Command Window.

Another example is to drag a filename from the Current Directory browser
to the Editor to open that file in the Editor. If you drag editable text, for
example, text in the Editor, the text is cut rather than copied. Use Ctrl and
drag to copy rather than cut editable text.

On Windows platforms, you can drag items from external applications into
MATLAB. For example, dragging text from a document created using the
Microsoft Word application into the Editor cuts and pastes it into the open
file. Dragging an M-file from Windows Explorer tool to the Command Window
runs the file. Similarly, you can drag selections from desktop tools to other
applications. For example, you can drag text from the Editor to Word.

Macintosh® Platform — Differences in the MATLAB®

Desktop
MATLAB on the Apple Macintosh platform sometimes uses GUI conventions
for the Macintosh platform, which might be different from what is stated in
the MATLAB documentation, but the intended action should be clear. For
example, if you select File > Save on the Macintosh platform, the Save dialog
box that appears presents the options Don’t Save and Save. On Windows
and The Open Group UNIX® platforms, the Save dialog box presents the
options Yes, No, and Cancel.

The standard mouse for Macintosh platforms is a single-button device.
Other platforms use a mouse with more than one button. MATLAB takes
advantage of these buttons. The documentation does not usually present the
equivalent instructions for the Macintosh platform. When the documentation
instruction is right-click, use Ctrl+click on the Macintosh platform. When
the documentation instruction is middle-click, use Command+click on the
Macintosh platform.

2-52

Other Desktop Features

Printing and Page Setup Options for Desktop Tools
You can print from all desktop tools except the Current Directory browser, but
there are some differences in usage.

To print, select File > Print from the tool. A Print dialog box opens. The
Properties button in the Print dialog box is enabled for the Web and Help
browsers and the Profiler, but is not enabled for the other desktop tools.

To specify standard page setup options for your platform when you print
from the Command History, Workspace browser, and Variable Editor, select
File > Page Setup. A standard page setup dialog box for your platform opens.

MATLAB provides special page setup options for printing from the Command
Window and Editor. The setup options are essentially the same for both tools,
with minor variations. This section covers their use:

• “Specifying Page Setup Options” on page 2-53

• “Layout Options for Page Setup” on page 2-54

• “Header Options for Page Setup” on page 2-55

• “Fonts Options for Page Setup” on page 2-55

Specifying Page Setup Options
To specify page setup options, perform these steps:

1 In the tool you want to print from, for example, the Command Window,
select File > Page Setup.

The Page Setup dialog box opens for that tool.

2-53

2 Desktop

2 Click the Layout, Header, or Fonts tab in the dialog box and set those
options for that tool, as detailed in subsequent sections.

3 Click OK.

4 After specifying the options, select File > Print in the tool you want to
print from, for example, the Command Window.

The contents from the tool are printed, using the options you specified in
Page Setup.

Layout Options for Page Setup
You can specify the following layout options. A preview area shows you the
effects of your selections:

• Print header — Print the header specified in the Header pane.

• Print line numbers — Print line numbers.

• Wrap lines — Wrap any lines that are longer than the printed page width.

2-54

Other Desktop Features

• Syntax highlighting — For keywords and comments that are highlighted
in the Command Window, specify how they are to appear in print. Options
are black and white text (that is, no highlighting), colored text (for use with
a color printer), or styled text. For styled text, keywords appear in bold,
comments appear in italics, and all other text appears in the normal style.
Only keywords and comments you input in the Command Window are
highlighted; output is not highlighted.

Header Options for Page Setup
If you want to print a header, select the Layout tab and then select Print
header. Then select the Header tab and specify how the elements of the
header are to appear. A preview area shows you the effects of your selections:

• Page number — Format for the page number, for example # of n

• Border — Border style for the header, for example, Shaded box

• Layout — Layout style for the header. For example, Standard one line
includes the date, time, and page number all on one line

Fonts Options for Page Setup
Specify the font to be used for the printed contents:

1 From Choose font, select the element, either Body or Header, where Body
text is everything except the Header.

2 Select the font to use for that element. For example, select Use Command
Window font for Body text if you want the printed text to be the same as
the font that appears in the Command Window. This is the font specified in
File > Preferences > Fonts > Custom for the Command Window.

3 Repeat for the other element. If you did not select Print header on
the Layout pane, you do not need to specify the Header font. As an
example, for Header text, select Use custom font and then specify the font
characteristics — type, style, and size. After you specify a custom font, the
Sample area shows how the font will look.

2-55

2 Desktop

Web Browser
Some tools in MATLAB and related products display HTML documents in the
MATLAB Web Browser. For example, after using the Editor’s cell features
to publish an M-file to HTML, you view the HTML file in the MATLAB Web
Browser. Because the MATLAB Web Browser is a desktop tool, you can dock
it and perform other desktop operations on it.

You can also use the tool to display Web sites and your own HTML files. To
display an HTML document in the Web Browser, double-click the document
name in the Current Directory browser. To open the browser without a
document in it, select Desktop > Web browser. Go to a Web site or an
HTML page by typing a URL or the full path to a filename in the Location
field. The toolbar buttons and menu items in the Web Browser are similar
to those found in the Help browser display pane. For more information, see
“Viewing Documentation in the Help Browser” on page 4-26.

2-56

Other Desktop Features

Like any Web browser, the MATLAB Web Browser might not support all
of the HTML or related features used in a particular Web site or HTML
page. For example, the MATLAB Web Browser does not support the display
of .bmp (bitmap) image files. Instead use .gif or .jpeg formats for image
files in HTML pages. As another example, it does not support HTML pages
you generate directly from Microsoft Word and Microsoft® PowerPoint®

applications.

Function Alternative
Use the web function to open a browser in MATLAB, and optionally specify
a URL or file to display. The web function supports arguments that display
documents in your system browser, for example, the Netscape Navigator®

browser, or in the Help browser. You can also use the web function in
conjunction with methods that operate on a specified browser, such as a
method to close a browser.

Internet Connection and Fonts for Web Browser — Web
Preferences
To specify a proxy server to connect from the MATLAB Web Browser to the
Internet, use Web preferences. You might need to specify this preference if
you have a firewall, for example. If you have a firewall and do not specify the
proxy settings, links from the Web Browser to URLs will not work.

Select File > Preferences > Web. By default, the check box Use a proxy
server to connect to the Internet is not selected. This is for when you have
a direct connection to the Internet.

To specify a proxy server, select the check box and specify the Proxy host and
Proxy port. See your system administrator for the information you need to
specify the proxy settings. As an example, 172.16.10.8 illustrates the format
for host, and 3128 is the type of value you enter for port.

Fonts for Web Browser. To modify the font used in the Web Browser, select
File > Preferences > Fonts. The Web Browser uses the font settings you
specify for HTML Proportional Text tool. For more information about setting
fonts, click the Help button in the preference pane for Fonts.

2-57

2 Desktop

Accessing The MathWorks on the Web
You can access popular pages on the MathWorks Web site from the MATLAB
desktop. Select one of the following items from the Help > Web Resources
menu. For most items, the selected Web page then opens in your default
system Web browser, for example, the Netscape Navigator browser:

• The MathWorks Web Site — Home page of the MathWorks Web site
(http://www.mathworks.com).

• Products & Services — MathWorks Products and Services page
(http://www.mathworks.com/products/) with information about the full
family of products.

• Support — MathWorks Support page
(http://www.mathworks.com/support) where you can look for solutions to
problems you are having, or report new problems.

• MathWorks Account

- Login in or Create Account — Login page for MathWorks Account
(http://www.mathworks.com/accesslogin/). If you are registered,
your main account page displays. Otherwise, you are directed to a page
where you register online. Registration allows you to view your product
registration and license information and helps you stay up to date on the
latest developments for MATLAB.

- Get Passcodes and Manage Licenses — If you have a MathWorks
Account, displays your Licenses page.

- Get Product Trials — If you have a MathWorks Account, provides
access to trial versions of products.

• MATLAB Central — MATLAB Central Web site
(http://www.mathworks.com/matlabcentral/) for the user community
for MATLAB. It includes contests for MATLAB and results, a screen saver
with the logo for MATLAB, and these technical resources:

- MATLAB File Exchange — Code library of files contributed by
MathWorks customers and employees, available for free download and
use with MathWorks products.

- MATLAB Newsgroup Access — Provides access to the Usenet
newsgroup for MATLAB and related products, comp.soft-sys.matlab,
where you can post and answer questions, as well as view the archives.

2-58

http://www.mathworks.com
http://www.mathworks.com/products/
http://www.mathworks.com/support
http://www.mathworks.com/accesslogin/
http://www.mathworks.com/matlabcentral/

Other Desktop Features

• MATLAB Newsletters — Access to online versions of News and Notes and
MATLAB Digest. News and Notes is published twice a year and contains
feature articles, technical notes, and product information for users of
MATLAB. MATLAB Digest, an electronic bulletin consisting of technical
notes, solutions, and timely announcements to the user community, is issued
more frequently. See http://www.mathworks.com/company/newsletters.

Managing Your License
You can use the licensing features to perform license management activities,
such as activating your license, deactivating your license, or updating your
license. You can also visit the License Center at the MathWorks Web site to
perform other license-related activities.

To access the feature:

1 Select Help > Licensing.

2 Select the activity you want to perform from the Licensing menu. The
following table describes the options. Depending on your license type, the
Licensing menu on your system might not include all options. Some
options require an Internet connection.

Option Description

Activate
Software

Starts the activation application. Select the license you
want to activate.

Deactivate
Current
License

Deactivates the license you are using to run MATLAB.
This process deactivates all releases associated with this
license. You must exit MATLAB after deactivating.

If you are not connected to the Internet, this option returns
a deactivation string. To complete deactivation, go to the
License Center at the MathWorks Web site and enter this
string.

Update
Current
License

Contacts The MathWorks to see if your MATLAB
installation has the most up-to-date License File. Retrieves
the latest License File and overwrites the current License
File on your system. You will then need to restart
MATLAB.

Manage
Licenses

Starts a Web browser, opening the My Licenses page
associated with your account. You can use this page, called
the License Center, to perform many licensing activities.

Check for Updates
Use Check for Updates to easily determine if more recent versions of your
MathWorks products are available, and to view the latest versions of all
MathWorks products.

To access the feature, you must have an active Internet connection. Then:

2-59

http://www.mathworks.com/company/newsletters

2 Desktop

1 Select Help > Check for Updates. The Check for Updates dialog box
displays.

2 Use Select View to show the latest version numbers for all MathWorks
products installed on your system, or all MathWorks products. The latest
versions are displayed.

3 Click any column heading to sort or reverse the sort order by that column.

4 Use the What’s New column to access the release notes for a product,
which document new features and changes, bug reports, and compatibility
considerations.

5 To upgrade to the most recent version, click Download Products at
MathWorks.com, which links to the Downloads area of the MathWorks
Web site. Otherwise, click Close.

Terms of Use and Patents
Access the terms of use and patent information for MathWorks products.

2-60

Preferences

Preferences

In this section...

“Setting Preferences” on page 2-61

“Summary of Preferences” on page 2-62

“Preferences File — matlab.prf” on page 2-63

Setting Preferences
Use preferences to specify options for MATLAB® tools, as follows:

1 Select File > Preferences. Alternatively, click the Preferences button
on the desktop toolbar; if the button is not on the toolbar, you can add
it—for information, see “Toolbars Preferences for the MATLAB® Desktop
and Editor” on page 2-87.

2 In the left pane of the Preferences dialog box, preferences appear for
MATLAB tools as well as for any other MathWorks™ products installed
on your system.

Choose a tool and click the + to display more preferences for that tool.
From the expanded list, select the entry you want. The right pane shows
the preferences for that item.

3 Change settings. Click Apply or OK to set the preferences. Preferences
take effect immediately. They remain persistent across sessions of
MATLAB.

Note that some tools allow you to control these settings from within the tool
without setting a preference. Use that method if you only want the change to
apply to the current session.

Function Alternative
Open the Preferences dialog box using the preferences function.

2-61

2 Desktop

Summary of Preferences

Preference What You Can Specify

General Preferences Toolbox path caching, figure window printing, delete function
behavior, MAT-file save formats, confirmation dialogs, source
control, and multithreaded computation.

Keyboard Key bindings, tab completion, and delimiter matching for the
Command Window and the Editor.

Fonts Font type, style, and size for desktop tools. Customize for any tool.

Colors Colors for text, background, syntax highlighting, and hyperlinks
in desktop tools.

M-Lint Show or hide M-Lint messages in the Editor M-Lint automatic
code analyzer and in the M-Lint Code Check Report.

Toolbars Remove, add, and rearrange controls on the MATLAB and Editor
toolbars.

Command Window Numeric format and display, accessibility, and tab size.

Command History Display, filtering, and saving.

Editor/Debugger Editor type, startup options, display, tab size and indenting,
language, including M-Lint messages, and autosave.

Help Product filter and synchronization.

Web Internet proxy server settings.

Current Directory Number of entries in history and display options.

Variable Editor Numeric format, use of Enter key, and decimal separator.

Workspace Statistical calculation options.

GUIDE Display options for GUI-building tool.

Time Series Tools Property Editor dialog and x-axes warning dialog.

Figure Copy Template Application, text, line, uicontrols, axis, format, background color,
and size.

Other products Preferences for other installed MathWorks products.

2-62

Preferences

Preferences File — matlab.prf
Preferences are stored in a preferences file, matlab.prf. Type prefdir in the
Command Window to see the full pathname for the preferences directory that
contains matlab.prf. The preference directory also contains related files.

On Apple® Macintosh® platforms, the directory might be in a hidden folder, for
example, myname/.matlab/R2008a. To access the directory, select Go > Go to
Folder in the Apple Mac OS® Finder. In the resulting dialog box, type the
path returned by prefdir and press Enter.

The matlab.prf file is loaded when MATLAB starts and is overwritten when
you close MATLAB.

The exact name of the preferences directory that MATLAB uses depends on
the release. When you install a new version of MATLAB, MATLAB tries to
use your existing preferences from the previous version, where possible. For
more information on the preference directory filename and the preference
migration process, see the reference page for prefdir.

2-63

2 Desktop

General Preferences for MATLAB® Application

In this section...

“Setting General Preferences for the MATLAB® Application” on page 2-64

“Toolbox Path Caching Preference” on page 2-65

“Figure Window Printing Preference” on page 2-65

“Default Behavior of the Delete Function” on page 2-66

“MAT-Files Preferences” on page 2-66

“Confirmation Dialogs Preferences” on page 2-69

“Source Control Preferences” on page 2-71

“Multithreading Preferences” on page 2-72

Setting General Preferences for the MATLAB®

Application
Select File > Preferences > General from any desktop tool to access
General Preferences.

These preferences apply to all relevant tools in the MATLAB® application.

2-64

General Preferences for MATLAB® Application

Toolbox Path Caching Preference
For information, see “Toolbox Path Caching in the MATLAB® Program” on
page 1-25.

Figure Window Printing Preference
For information, see “Printing and Exporting” in MATLAB Graphics
documentation.

2-65

2 Desktop

Default Behavior of the Delete Function
Files you delete using the delete function are permanently removed by
default. There is no opportunity to retrieve them.

You can use this preference to instead move deleted files to the Recycle Bin
on Microsoft® Windows®, to the Trash Can on Apple®Macintosh®, or to a tmp
directory on The Open Group UNIX® platforms. Then, you can recover any
accidentally deleted files from these locations. Deleted files in these locations
are not automatically removed; you must remove them using operating
system features, such as Empty Recycle Bin on the Windows platform.
When you select this preference, delete might run slower.

Function Alternative
The delete preference for MATLAB actually sets the state of the recycle
function upon startup and when you change the preference. You can override
the behavior of the preference by setting the recycle function state. For
example, regardless of the preference setting, when you run

recycle('off')
delete('thisfile.m')

MATLAB permanently removes thisfile.m from the current directory. Files
you subsequently remove using delete are also permanently removed, unless
you reapply the preference to recycle or run recycle('on'). Regardless of the
state of the recycle function when you end a session, the next time you start
MATLAB, the setting for the preference is honored. For more information, see
the recycle and delete reference pages.

Note that this preference and the recycle function do not apply to files
you delete using the Current Directory browser. For more information, see
“Cutting or Deleting Files and Directories” on page 5-56.

MAT-Files Preferences
The MAT-file save format sets the default version compatibility option
MATLAB uses when saving MAT-files. Use these options if you use multiple
versions of MATLAB or share MAT-files with others who run a different
version of MATLAB. The setting applies when you use the save function as

2-66

General Preferences for MATLAB® Application

well as when you useSave menu items for MAT-files, such as File > Save
Workspace As from any desktop tool.

The MAT-file preference also applies to saving FIG-files, which include plots,
as well as GUIs you create with GUIDE.

Options are

• MATLAB Version 7.3 or later (save -v7.3)—Starting in MATLAB
Version 7.3, you can save data that is larger than 2 GB on platforms that
allow it, which is the primary purpose of this option. Using this option is
equivalent to running save -v7.3. This format of the resulting MAT-file is
HDF5-based. You cannot load these MAT-files into any versions prior to
MATLAB Version 7.3; in those cases, use one of the other two options.

2-67

2 Desktop

• MATLAB Version 7 or later (save -v7)—Starting in MATLAB Version 7,
MATLAB compresses the data when saving a MAT-file, thereby reducing
the storage space required. When you load the MAT-file, MATLAB
automatically uncompresses the data. In addition, MATLAB uses Unicode®

character encoding for strings when you save a MAT-file, making the data
accessible to other users of MATLAB, regardless of the default character
encoding scheme used by their systems. MAT-files saved with this option
work in all MATLAB 7 versions. Using this option is equivalent to running
save -v7.

• MATLAB Version 5 or later (save -v6)—Releases of MATLAB prior to
Version 7 did not save compressed MAT-files. They also did not use Unicode
character encoding, which sometimes prevented the exchange of MAT-files
among users, particularly when they used localized systems. Specify this
option to save MAT-files for use with versions prior to MATLAB Version 7.
Using this option is equivalent to running save -v6.

Like other preferences, the MAT-file save format preference gets its initial
value from the preference file for the previous installed version. For example,
if the setting in your MATLAB 7.5 preference is -v6, when you upgrade from
MATLAB Version 7.5 (R2007b) to MATLAB Version 7.6 (R2008a), the initial
value in Version 7.6 is -v6.

If you upgrade from a version prior to MATLAB Version 7.3, or if you do not
have a previous MATLAB version installed, the initial value is -v7.

Note For more information about MAT-file save formats, including
restrictions, see Version Compatibility Options and Remarks in the save
reference page.

Function Alternative
You can override the MAT-file save format preference by using the save
function with a specified version compatibility option. For occasional use, this
might be more convenient than changing the preference. For example, use
save with the-v6 option to ensure compatibility with MATLAB versions prior
to Version 7. For more information, see the save reference page.

2-68

General Preferences for MATLAB® Application

Confirmation Dialogs Preferences
These preferences instruct MATLAB to display or not display specific
confirmation dialog boxes.

When the check box for a confirmation dialog is selected and you perform the
action it refers to, the confirmation dialog box appears. If you clear that check
box, the dialog box does not appear when you perform the action.

When the confirmation dialog box does appear, it includes a Do not show
this prompt again check box. If you select the check box in the dialog box, it
automatically clears the check box for the confirmation preference.

2-69

2 Desktop

For example, select the check box Warn before deleting Command History
items. Then select Edit > Delete Selection in the Command History,
MATLAB displays the following confirmation dialog box.

If you select the Do not show this prompt again check box and click OK,
the confirmation dialog box will not appear the next time you delete items
from the Command History window. In addition, the Warn before deleting
Command History items check box in the Confirmations Dialogs
preferences pane is cleared.

The following table summarizes the confirmation dialog boxes.

Confirmation Dialogs
Check Box Item

About the Confirmation
Dialog Box For More Information

Warn before deleting
Command History items

Appears when you delete entries
from the Command History
window.

“Deleting Entries from the
Command History Window” on
page 3-57

Warn before clearing the
Command Window

Appears when you clear the
Command Window content using
menu items. Does not appear
when you use the clc function.

“Clearing the Command
Window” on page 3-31

Prompt when editing files
that do not exist

Appears when you type edit
filename, if filename does not
exist in the current directory or
on the search path.

“Function Alternative for
Creating New Files” on page 6-9

2-70

General Preferences for MATLAB® Application

Confirmation Dialogs
Check Box Item

About the Confirmation
Dialog Box For More Information

Prompt to exit debug
mode when saving file

Appears when you try to save
a modified file while in debug
mode.

“Ending Debugging” on page
6-134

Prompt to save on activate Appears when you have unsaved
changes to a figure and M-file,
and then activate the GUI, by
clicking the Run button, for
example.

“GUIDE Preferences” in the
GUIDE documentation

Prompt to save on export Appears when you have unsaved
changes to a figure and M-file,
and then select File > Export.

“GUIDE Preferences” in the
GUIDE documentation

Confirm before exiting
MATLAB

Appears when you quit MATLAB. Quitting MATLAB

Warn about missing
search databases

Appears if you have help
files in the Help browser for
non-MathWorks products and
the search database for those
files has not been updated for
the version of MATLAB you are
running.

Contact the provider of the help
files to obtain the correct version
of the search database. Without
the most current version, you
can use the help files in the Help
browser, but the Help browser
search will not include those files
in search results.

Confirm when deleting
variables

Appears when you delete
variables from the workspace
using menu items. Does not
appear with the clear function.

“Deleting Workspace Variables”
on page 5-8

Source Control Preferences
For information, see Chapter 10, “Source Control Interface”.

2-71

2 Desktop

Multithreading Preferences
If you run MATLAB on a multiple-CPU system (multiprocessor or multicore),
you can use multithreaded computation, which can improve performance
for some operations. For more information, see “Enabling Multithreaded
Computation”.

2-72

Fonts Preferences for Desktop Tools

Fonts Preferences for Desktop Tools

In this section...

“Setting Desktop Fonts” on page 2-73

“Desktop Code Font and Desktop Text Font” on page 2-74

“Custom Fonts Preferences” on page 2-78

“Changing the Font — Example” on page 2-79

“Antialiasing for Desktop Fonts on Linux® and UNIX® Platforms” on page
2-80

“Making Fonts Available to MATLAB® Tools” on page 2-80

Setting Desktop Fonts
Use desktop font preferences to specify the font characteristics for MATLAB®

desktop tools. The font characteristics are

• Name (also called family or type), for example, select SansSerif

• Style, for example, select bold

• Size in points, for example, type 11 points

Select File > Preferences > Fonts to set fonts for desktop tools. You can
specify the font to be used by all tools that primarily display code such as the
Command Window, and specify the font to be used by all other desktop tools.
Or you can separately specify the font for any desktop tool.

Select the font characteristics from the lists shown. For font size, not all
entries are shown. You can type in a size, including one not shown.

You can set some font options differently for printing — see “Printing and
Page Setup Options for Desktop Tools” on page 2-53.

For information about making additional fonts available to MATLAB, see
“Making Fonts Available to MATLAB® Tools” on page 2-80.

2-73

2 Desktop

Desktop Code Font and Desktop Text Font
You specify separate font characteristics for tools that primarily display
code (Desktop code font), such as the Command Window, and tools that
primarily display text (Desktop text font), such as the Current Directory

2-74

Fonts Preferences for Desktop Tools

browser. Many users prefer that code display in a monospace font to provide
better alignment, and prefer a more narrow font style for text information.
With the desktop code font preference, you set just one preference to apply
a monospace style to all tools that display code (except the Help and Web
Browsers). Similarly, you can set just one preference to apply a text font to
all desktop tools that display text.

The following illustrations show how the Editor would look using a monospace
font and a proportional font. Note that a monospace font is useful when you
care about alignment, but a proportional font uses less space.

2-75

2 Desktop

Default Font Settings
Default settings are listed in the following table. Note that Lucida Console
approximates the fixedsys font available in earlier versions of MATLAB.

2-76

Fonts Preferences for Desktop Tools

Font Type
Default Characteristics and
Sample Tools Using Font Type by Default

Desktop code font Monospaced, Plain, 10 point • Command History

• Command Window

• Editor (which also applies to the
Shortcuts Editor)

Desktop text font SansSerif, Plain, 10 point • Variable Editor

• Current Directory browser
(which also applies to the Path
browser)

• Help Navigator

• HTML Proportional Text. This
is the font used for noncode text
in the Web browser (including,
for example, HTML reports
generated from cell publishing),
Profiler, and Help browser
display pane. While you can
select the font name, you
cannot change the font style
(for example, to bold or italic)
for HTML Proportional Text.
Changes to size affect noncode
and code text.

• Workspace browser

When you change a font characteristic for Desktop code font, the
characteristic takes effect for all tools that use the desktop code font. The
same is true when you change a font characteristic for Desktop text font.

After changing a characteristic, a sample in the dialog box shows how it will
look. Click Apply or OK to make the change take effect in the desktop tools.

See Also
“Preferences” on page 2-61

2-77

2 Desktop

Custom Fonts Preferences
If you do not want to use the current settings for “Desktop Code Font and
Desktop Text Font” on page 2-74, you can specify that a tool use the code font,
the text font, or a different font. Select File > Preferences > Fonts. Click +
and select Custom. The Fonts Custom Preferences pane appears.

Select a tool from the Desktop tools list. The type of font it uses, code or
text, appears under Font to Use. In the illustration shown, the Command
Window uses the Desktop code font, which is defined in the Fonts pane
as described in the previous section.

2-78

Fonts Preferences for Desktop Tools

To change the font characteristics the selected tool uses, select a different radio
button. For Custom, you then specify the font characteristics for that tool.

Changing the Font — Example
This example changes the default settings (see “Default Font Settings” on
page 2-76) for the desktop code font, changes the Command History font
preference so that it uses the desktop text font instead of the code font, and
specifies a custom font for the Current Directory browser:

1 Change the characteristics for the desktop code font. On the Fonts pane,
set the Desktop code font to Times New Roman, Plain, 14 point. Use
the default for the Desktop text font, SansSerif, Plain, 10 point. Click
Apply.

2 Make the Command History window use the desktop text font. Select
Fonts, click +, select Custom, and then select Command History from
Desktop tools. Select the Desktop text radio button.

3 Apply a custom font to the Current Directory browser. Select Current
Directory from Desktop tools. Select the Custom radio button. Select
Arial Narrow and Plain, and type 11 in the size field. Click OK.

The following table details the results of the changes.

Tool Font Type Font Characteristics

Command Window Desktop code Monotype Imaging Times New
Roman® font, Plain, 14 point

Command History Desktop text SansSerif, Plain, 10 point

Editor Desktop code Times New Roman font, Plain,
14 point

Help Navigator Desktop text SansSerif, Plain, 10 point

HTML Proportional
Text

Desktop text SansSerif, Plain, 10 point

Current Directory Custom Monotype Corporation Arial®

font, Plain, 11 point

2-79

2 Desktop

Tool Font Type Font Characteristics

Workspace Desktop text SansSerif, Plain, 10 point

Variable Editor Desktop text SansSerif, Plain, 10 point

See Also
For information about how MATLAB stores preferences and help for other
preferences, see “Preferences” on page 2-61.

Antialiasing for Desktop Fonts on Linux® and UNIX®

Platforms
To give the desktop a smoother appearance on Linus Torvalds Linux® and
The Open Group UNIX® platforms, select the antialiasing preference on the
Preference > Fonts pane. The preference apply to all fonts.

Note The antialiasing option is not necessary on Microsoft® Windows®

or Apple® Macintosh® platforms, because MATLAB follows the operating
system’s font settings on these platforms.

Making Fonts Available to MATLAB® Tools
On Windows platforms, desktop components (such as the Command Window
and Workspace browser), figure windows, and uicontrols support only Apple
TrueType® and Microsoft OpenType® fonts. Some graphics objects can render
bitmapped fonts as well, such as xlabel, ylabel, title, and text.

To make a new compatible font available to MATLAB, install the font by
selecting Start > Control Panel > Fonts in the Windows desktop, and then
selecting File > Install New Font. Restart MATLAB so that it can use the
font.

2-80

Colors Preferences for Desktop Tools

Colors Preferences for Desktop Tools

In this section...

“Setting Colors Used in Desktop Tools” on page 2-81

“Desktop Tool Colors” on page 2-83

“M-File Syntax Highlighting Colors” on page 2-84

“Other Colors” on page 2-86

“See Also” on page 2-86

Setting Colors Used in Desktop Tools
Desktop color preferences specify the colors used in MATLAB®

desktop tools and the colors that convey syntax highlighting. Select
File > Preferences > Colors to set color preferences for desktop tools. You
can set some color options differently for printing — see “Printing and Page
Setup Options for Desktop Tools” on page 2-53.

2-81

2 Desktop

���������
�������������������%��) �����
�
���������
�����
�������������)�%��
�����������
������
�������������
������

$���	������
��
����
����
	�)�
	�����
(������
1	����
���
/�
�
%����
�����������

2-82

Colors Preferences for Desktop Tools

Desktop Tool Colors
Use Desktop tool colors to change the color of the text and background in
the desktop tools. The colors also apply to the Import Wizard. The colors do
not apply to the HTML display pane nor to the Web Browser.

Select the check box Use system colors if you want the desktop to use the
same text and background colors that your platform (for example, Microsoft®

Windows®) uses for other applications.

To specify different text and background colors, follow these steps:

1 Clear the Use system colors check box.

2 Click the arrow next to the Text color and choose a new color from the
palette shown.

When you choose a color, the Sample area in the dialog box updates to
show you how it will look.

3 Click the arrow next to the Background color and choose a new color.

If you use a gray background color, a selection in an inactive window will
not be visible.

4 Click Apply or OK to see the changes in the desktop tools.

Click Restore Default Colors to return to the default settings for desktop
tool colors, as well as for syntax highlighting colors.

The following illustration shows how the Current Directory browser looks
with blue-green text and a beige background. These colors are only discernible
in the online version of this documentation.

2-83

2 Desktop

Gray Background Color
For some UNIX® platforms, there is a gray background color for desktop tools,
such as the Editor. This occurs when the preference for Desktop tool colors
is set to Use system colors, and the system’s window manager uses gray as
the background color default. To change the color, clear the check box for Use
system colors and then select a new Background color from the palette.

M-File Syntax Highlighting Colors
In the Command Window, Command History, Editor, and Shortcuts callback
area, MATLAB conveys syntax information via different colors to help you
easily identify elements, such as if/else statements. This is known as
syntax highlighting.

In the Command Window, only the input you type is highlighted; the output
from running MATLAB functions is not highlighted.

Note To set syntax highlighting colors for TLC, ANSI® C language, C++,
Sun Microsystems™ Java™ language, HTML, and XML files, use the
Editor/Debugger language preferences by selecting File > Preferences,
and then clicking Language. Click the Help button to get information on
Language Preferences in the online documentation.

2-84

Colors Preferences for Desktop Tools

When you choose a color under the M-file syntax highlighting colors area,
the Sample area in the dialog box updates to show you how it will look.

The default colors are listed here:

• Keywords — Flow control functions, such as for and if, as well as the
continuation ellipsis (...), are colored blue.

• Comments — All lines beginning with a %, designating the lines as
comments in MATLAB, are colored green. Similarly, the block comment
symbols, %{ and %}, as well as the code in between, appear in green. Text
following the continuation ellipsis on a line is also green because it is
a comment.

• Strings — Type a string and it is colored maroon. When you complete the
string with the closing quotation mark ('), it becomes purple. Note that for
functions you enter using command syntax instead of function syntax, the
arguments are highlighted as strings. This is to alert you that in command
notation, variables are passed as literal strings rather than as their values.
For more information, see “MATLAB Command Syntax” in the MATLAB
Programming Fundamentals documentation.

• Unterminated strings — A single quote without a matching single quote,
and whatever follows the quote, are colored maroon. This might alert you
to a possible error.

• System commands — Commands such as ! (shell escape) are colored gold.

• Errors — Error text that appears after you run code, including any
hyperlinks, is colored red.

2-85

2 Desktop

Click Restore Default Colors to return to the default settings for syntax
highlighting colors and desktop tool colors.

Note Syntax highlighting for M-files is enabled by default. If you find it is
disabled, follow these steps to reenable it:

1 Select File > Preferences, and then click Language.

The Editor/Debugger Language Preferences dialog box opens.

2 In the Language drop-down menu, select M.

3 In the Syntax area, select Enable syntax highlighting.

Note that from this area, you can access the Colors Preferences dialog
box, by clicking Set syntax colors.

4 Click Apply.

Other Colors
Specify the color for Hyperlinks, which applies to links in the Command
Window and Help browser Index pane. If you use a dark background color for
those tools, be sure to use a light or other contrasting color for hyperlinks so
that you can see them.

With the M-Lint autofix highlight preference selected, code that M-Lint
can automatically correct is highlighted in the Editor. Use the palette to
change the highlight color. For more information, see “M-Lint Automatic Code
Analyzer in the Editor” on page 6-101.

See Also
For information about other preferences and how the MATLAB program
stores preferences, see “Preferences” on page 2-61.

2-86

Toolbars Preferences for the MATLAB® Desktop and Editor

Toolbars Preferences for the MATLAB® Desktop and Editor
You can customize some toolbars in the MATLAB® interface using Toolbars
preferences. You can add and remove buttons and other controls, as well as
change their position on the toolbar. This figure summarizes how to modify
toolbars.

7��$�
�����������
%��������������������	"��

8��������!���������
���	�����
����	��
8%���������
���
����!��%�����
�������	�	���	��

9��$�
�������
�����
�����
�������
��!��������
���
%��

This figure shows an example of a customized MATLAB desktop toolbar.

2-87

2 Desktop

#����
���������������)�������
%��������	"�����	� �����������

To customize a toolbar, follow these steps:

1 Select File > Preferences > Toolbars. You can also access Toolbars
Preferences by right-clicking a toolbar and selecting Customize from the
context menu.

2 Choose the toolbar to modify — in the Toolbars Preferences pane, select a
toolbar to customize from the Toolbar list:

• MATLAB, the toolbar in the MATLAB desktop

• Editor, the toolbar in the MATLAB Editor

• Editor Cell Mode, a specialized toolbar in the Editor; for more
information, see “Using Cells for Rapid Code Iteration and Publishing
Results” on page 6-147

The controls for the selected toolbar appear in the Layout and Controls
areas of the Toolbars preference panel.

3 Removing controls — choose a control to remove from the selected toolbar
by clearing its check box in the Controls area. For example, to remove the
Cut, Copy, and Paste toolbar buttons, clear the check box for each.

Adding controls — choose a control to add to the toolbar by selecting its
check box in the Controls area. For example, select the Demos check box to
add its button to the toolbar.

The Layout area displays the controls you chose for the toolbar, in the
order they will appear.

4 Rearrange the order of the controls and separator bars on the selected
toolbar using the Layout area:

• Drag a control or separator bar to another position.

2-88

Toolbars Preferences for the MATLAB® Desktop and Editor

• Select a control or separator bar, then use a move button. For example,
select the Demos button , and then the Move to the End button .
The Demos button moves to the right end.

• Add a separator bar after the selected control using this button: . To

remove a separator bar, select it and then use the Remove button .
You can use the Remove button to delete any control selected in the
Layout area.

The Layout area displays the controls in the order you specified.

5 To show the controls that appeared on the selected toolbar and in the
same order as when MATLAB was first installed, click Restore Factory
Controls.

6 Click Apply or OK. The toolbars in the desktop and Editor update to
reflect the changes you made.

For information about hiding, showing, and moving toolbars, see “Toolbars” on
page 2-47. For information about the Cell Mode toolbar, see “Using Cells for
Rapid Code Iteration and Publishing Results” on page 6-147.

2-89

2 Desktop

Accessibility

In this section...

“Software Accessibility Support” on page 2-90

“Documentation Accessibility Support” on page 2-91

“Assistive Technologies” on page 2-92

“Installation Notes for Accessibility Support” on page 2-93

“Troubleshooting” on page 2-96

Software Accessibility Support
MathWorks™ products includes a number of modifications to make them
more accessible to all users. Software accessibility support for blind and
visually impaired users includes:

• Support for screen readers and screen magnifiers, as described in “Assistive
Technologies” on page 2-92

• Command-line alternatives for most graphical user interface (GUI) options

• Keyboard access to GUI components

• A clear indication of the current cursor focus

• Information available to assistive technologies about user interface
elements, including the identity, operation, and state of the element

• Nonreliance on color coding as the sole means of conveying information
about working with a GUI

• Noninterference with user-selected contrast and color selections and other
individual display attributes, as well as noninterference for other operating
system-level accessibility features

• Consistent meaning for bitmapped images used in GUIs

• HTML documentation that is accessible to screen readers

Keyboard access to the user interface includes support for “sticky keys,” which
allow you to press key combinations (such as Ctrl+C) sequentially rather
than simultaneously.

2-90

Accessibility

Except for scopes and real-time data acquisition, the MathWorks software
does not use flashing or blinking text, objects, or other elements having a
flash or blink frequency greater than 2 Hz and lower than 55 Hz.

The MathWorks believes that its products do not rely on auditory cues as the
sole means of conveying information about working with a GUI. However,
if you do encounter any issues in this regard, please report them to the
MathWorks Technical Support group.

http://www.mathworks.com/contact_TS.html

Documentation Accessibility Support
Documentation is available in HTML format for all MathWorks products in
this release.

Accessing the Documentation
To access the documentation with a screen reader, go to the documentation
area on the MathWorks Web site at

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Navigating the Documentation
Note that the first page that opens lists the products. To get the
documentation for a specific product, click the link for that product.

The table of contents is in a separate frame. You can use a document’s table of
contents to navigate through the sections of that document.

Because you will be using a general Web browser, you will not be able to use
the search feature included in the MATLAB® Help browser. You will have
access to an index for the specific document you are using. The cross-product
index of the MATLAB Help browser is not available when you are using a
general Web browser.

Products
The documentation for all products is in HTML and can be read with a screen
reader. However, for most products, most equations and most graphics are
not accessible.

2-91

http://www.mathworks.com/contact_TS.html%0D
http://www.mathworks.com/access/helpdesk/help/helpdesk.html%0D

2 Desktop

The following product documentation has been modified (as described below)
to enhance its accessibility for people using a screen reader such as the
JAWS® application software from Freedom Scientific BLV Group:

• MATLAB (many sections, but not the function reference pages (however,
M-file help is accessible))

• Spreadsheet Link™ EX

• Optimization Toolbox™

• Signal Processing Toolbox™

• Statistics Toolbox™

Documentation Modifications
Modifications to the documentation include the following:

• Describing illustrations in text (either directly or via links)

• Providing text to describe the content of tables (as necessary)

• Restructuring information in tables to be easily understood when a screen
reader is used

• Providing text links in addition to any image mapped links

Equations
Equations that are integrated in paragraphs are generally explained in words.
However, most complex equations that are represented as graphics are not
currently explained with alternative text.

Assistive Technologies

Note To take advantage of accessibility support features, you must use
MathWorks products on a Microsoft® Windows® platform.

2-92

Accessibility

Tested Assistive Technologies
The MathWorks has tested the following assistive technologies:

• The JAWS screen reader application software 5.0, 6.0, and 7.0 for Windows
platforms from Freedom Scientific

• Built-in accessibility aids from Microsoft, including the Magnifier and
“sticky keys”

Use of Other Assistive Technologies
Although The MathWorks has not tested other assistive technologies, such as
other screen readers or ZoomText® Xtra screen magnifier from Ai Squared,
The MathWorks believes that most of the accessibility support built into its
products should work with most assistive technologies that are generally
similar to the ones tested.

If you use other assistive technologies than the ones tested, The MathWorks
is very interested in hearing from you about your experiences.

Installation Notes for Accessibility Support

Note If you are not using a screen reader such as the JAWS application
software , you can skip this section.

This section describes the installation process for setting up your MATLAB
environment to work effectively with the JAWS software.

Use the regular MATLAB installation script to install the products for which
you are licensed. The installation script has been modified to improve its
accessibility for all users.

Note Java™ Access Bridge 2.0 software from Sun Microsystems™ is installed
automatically when you install MATLAB.

2-93

2 Desktop

After you complete the product installation, there are some additional steps
you need to perform to ensure the JAWS software works effectively with
MathWorks products.

Setting Up JAWS® Software
Make sure that the JAWS application software is installed on your machine.
If it is, there is probably a shortcut to it on the Windows desktop.

Setting up JAWS software involves these tasks:

1 Add the Access Bridge to your Windows path (for networked installations
only).

2 Create the accessibility.properties file.

These tasks are described in more detail below.

(For Networked Installations Only) Add Java Access Bridge Software
to Your Path. If you are running MATLAB in a networked installation
environment (that is, if the MATLAB Installer was not run on your machine),
you need to take the following steps to add Java Access Bridge to your
Windows path.

Note This procedure assumes the Start button in your Windows preferences
is set to Classic mode. To set Classic mode, from the Start button, select
Settings. Next select Task Bar and Menu. Then select the Start Menu
tab and make sure the Classic Start Menu option is enabled. Click OK
and you are done.

1 From the Start button, select Settings, next select Control Panel. Scroll
down and click the System icon to display the System Properties dialog box.

2 In the System Properties dialog box, select the Advanced tab.

3 Click Environment Variables.

4 Under System variables, select the Path option.

2-94

Accessibility

5 Click the Edit button.

6 To the start of the Path environment variable, add the directory that
contains matlab.exe; for example:

C:\matlab\bin\win32;

Be sure to include that semicolon between the end of this directory name
and the text that was already there.

7 Click OK three times.

8 If the JAWS software is already running, exit and restart.

Note The JAWS software must be started with these path changes in effect
to work properly with MATLAB.

Create the accessibility.properties File.

1 Create a text file that contains the following two lines:

screen_magnifier_present=true
assistive_technologies=com.sun.java.accessibility.AccessBridge

2 Use the filename accessibility.properties.

3 Move the accessibility.properties file into

matlabroot\sys\java\jre\win32\jre1.5.0_07\lib\

Pronunciation Dictionary for the JAWS Software. As a convenience, The
MathWorks provides a pronunciation dictionary for the JAWS application
software. This dictionary is in a file called MATLAB.jdf.

During installation, the file is copied to your system under the root directory
for MATLAB at sys\Jaws\matlab.jdf.

To use the dictionary, you must copy it to the \SETTINGS\ENU folder located
beneath the root installation directory for the JAWS software.

2-95

2 Desktop

You need to restart the JAWS software and MATLAB for the settings to take
effect.

Testing
After you install the JAWS software and set up your environment as described
above, you should test to ensure the JAWS software is working properly:

1 Start the JAWS software.

2 Start MATLAB.

The JAWS software should start talking to you as you select menu items and
work with the user interface for MATLAB in other ways.

Troubleshooting
This section identifies workarounds for some possible issues you may
encounter related to accessibility support in MathWorks products.

JAWS® Software Does Not Detect When Installation of the
MATLAB® Software Has Started
When you select setup.exe, the Windows copying dialog box opens and you
are informed. After the files have been copied, the installation splash screen
opens, and then the installer starts. However, the JAWS software does not
inform you that the installer has begun: the installer either starts up below
other windows or applications or it is minimized. Since the installer is not an
active item, nothing is read.

Therefore, check the Windows applications bar for the installer. After you go
to the installer, you can use the JAWS software to perform the installation.

JAWS® Software Stops Speaking
When many desktop components are open, the JAWS software sometimes
stops speaking for MATLAB.

If this happens, close most of the desktop components, exit MATLAB, and
restart.

2-96

Accessibility

Command Output Not Read
In the MATLAB Command Window, the JAWS software does not
automatically read the results of commands.

To read command output, first select File > Preferences > Command
Window, select the option Use arrow keys for navigation instead of
command history recall, and click OK. Then, in the Command Window,
press the arrow keys to move to the command output and use keystrokes for
the JAWS software to read the output.

With this preference set, you cannot use arrow keys to recall previous
commands. Instead use the following key bindings:

• Key bindings for Windows platforms:

- Previous history: Ctrl+up arrow

- Next history: Ctrl+down arrow

• Emacs key bindings:

- Previous history: Ctrl+p

- Next history: Ctrl+n

To return to using the up and down arrow keys to recall previous commands,
clear the preference.

Some GUI Menus Are Treated as Check Boxes
For some GUIs (for example, the figure window), menus are treated by the
JAWS software as though they are check boxes, whether or not they actually
are.

You can choose a menu item for such GUIs by using accelerator keys (e.g.,
Ctrl+N to select New Figure), if one is associated with a menu item. You can
also use mnemonics for menu navigation (e.g., Alt+E).

Note that check boxes that you encounter by tabbing through the elements of
a GUI are handled properly.

2-97

2 Desktop

Text Ignored in Some GUIs
For some dialog boxes, the JAWS software reads the dialog box title and any
buttons, but ignores any text in the dialog box.

Also, in parts of some GUIs, such as some text-entry fields, the JAWS software
ignores the label of the field. However, the JAWS software will read any text
in the text box.

2-98

Internationalization

Internationalization

In this section...

“How the MATLAB® Process Uses Locale Settings” on page 2-99

“Setting the Locale” on page 2-101

How the MATLAB® Process Uses Locale Settings
A locale is part of the user environment definition. It defines language,
territory, and codeset, which is a coded character set. The MATLAB® process
uses the user-specified locale name on all platforms. MATLAB also reads the
user-specified UI language name, and uses it to select localized resources
in the specified language. By using this feature, a user can select localized
resources in US-English. The user-specified UI language setting also controls
language and country settings of the Sun™ Java™ Virtual Machine (JVM™)
software.

Consider the following when choosing your locale settings. To see what
settings you are using, use the instructions in “Setting the Locale” on page
2-101.

• Default Locale Setting — If the user-specified locale is not supported,
MATLAB uses the default locale en_US.US-ASCII.

• UI Language Setting — The UI language setting should be set to either
the same language as the user specified locale or to US-English. Otherwise,
non-7-bit ASCII characters may not display properly.

• Supported Encoding Scheme — MATLAB may not properly handle
character codes greater than 2 bytes.

• Supported Character Set — MATLAB supports the character set
specified by the user locale setting.

• M-File Compatibility — Non-7-Bit ASCII characters in M-files created
on one platform may not be compatible on other platforms using different
locale settings.

• Platform-Specific Localized Formats — MATLAB usually uses
platform-neutral localized formats and rules.

2-99

2 Desktop

• Microsoft® Windows® Platform Requirement — User locale and system
locale must be the same value. If these values are not the same, users may
see garbled text or incorrect characters. For information on controlling
these settings, see “Locale Settings on Windows® Platforms” on page 2-101.

• Apple® Macintosh® OS X Platform Restriction — MATLAB
automatically chooses a codeset for each combination of language and
territory. In Version 10.5 of the OS X operating system, MATLAB ignores
the LANG environment variable.

• Macintosh OS X Version 10.5 Platform Restriction — When you run
MATLAB software with the -nodesktop startup option, the MATLAB locale
setting is not the Macintosh locale setting for the Terminal application. For
example, for users selecting the Japanese_Japan region on the Formats
tab, the MATLAB locale setting is ja_JP.sjis. The Macintosh locale
setting is ja_JP.UTF-8.

Calculating Dates in Programs
To ensure the correct calculation of functions using date values, replace
datenum function calls with the use of the dir function datenum field.

For example, look at the modification date of your MATLAB license.txt file:

cd(matlabroot)
f=dir('license.txt')

MATLAB displays information similar to:

f =
name: 'license.txt'
date: '10-May-2007 17:48:22'

bytes: 5124
isdir: 0

datenum: 7.3317e+005

If your code uses a command similar to:

n=datenum(f.date);

you must replace it with:

n=f.datenum;

2-100

Internationalization

Numeric Format Uses C Locale
MATLAB reads the user locale for all categories except for the LC_NUMERIC
category. This category controls numeric data formatting and parsing.
MATLAB always sets LC_NUMERIC to the C locale.

For example, some users expect a comma in a number while other users
expect a decimal. The value of pi can be displayed as 3.1415 or 3,1415,
depending on the format used by a locale. MATLAB always uses 3.1415,
regardless of the format specified by the user locale.

Setting the Locale
This topic describes how to set locale values on various platforms.

Locale Settings on Windows® Platforms
MATLAB uses the system locale and user locale on Windows platforms.

Setting User Locale. This topic describes how to set the user locale on each
Windows platform.

Windows Vista™ Platforms

1 Select Start -> Control Panel -> Regional and Language Options

2 Open Formats tab

3 Select an item from the drop-down list

Windows® XP Platforms

1 Select Start -> Control Panel -> Regional and Language Options

2 Open Regional Options tab

3 Select an item from the drop-down list

2-101

2 Desktop

Setting System Locale. This topic describes how to set the system locale
on each Windows platform.

Note When you change the system locale, you must reboot your system;
otherwise, you may see unexpected locale-setting behaviors.

Windows Vista™ Platforms

1 Select Start -> Control Panel -> Regional and Language Options

2 Open Administrative tab

3 Click Change system locale... button

4 Select an item from the drop-down list

5 Reboot the system

Windows® XP Platforms

1 Select Start -> Control Panel -> Regional and Language Options

2 Open Advanced tab

3 Select an item from the drop-down list

4 Reboot the system

Locale and UI Language Settings on Linux® and Solaris™
Platforms
Linux®1 and Sun Solaris™ platforms manage locale settings with six locale
categories. These are the same categories used by C standard library
functions.

1. Linux is a registered trademark of Linus Torvalds.

2-102

Internationalization

The following locale categories are available:

• LC_CTYPE controls character data manipulations

• LC_COLLATE controls character collation/sorting operations

• LC_TIME controls date/time data formatting or parsing

• LC_NUMERIC controls numeric data formatting or parsing

• LC_MONETARY controls monetary data formatting or parsing

• LC_MESSAGES controls the user UI language

Setting User Locale and User UI Language. Use the LANG environment
variable to specify a single locale for all locale categories. The locale
specified with this variable may be partially or entirely over-written by other
environment variables.

Use the environment variables LC_CTYPE, LC_COLLATE, LC_TIME, LC_NUMERIC,
and LC_MONETARY to specify a locale for a particular category.

Use the LC_ALL environment variable to over-write all locales specified with
other environment variables. If a single locale has to be set to all locale
categories, use LANG instead of LC_ALL.

Locale and UI Language Settings on Macintosh® Platforms
The Macintosh OS X platform manages the user locale setting and the user
UI language setting.

Setting User Locale.

1 Select System Preferences ->International

2 Open Formats tab

3 Select an item from the Region pop-up menu

Setting UI Language.

1 Select System Preferences ->International

2-103

2 Desktop

2 Open Language tab

3 Drag an item to the top of the Languages list

2-104

3

Running Functions —
Command Window and
History

If you have an active Internet connection, you can watch the Working in the
Development Environment video demo and the Command History video demo
for an overview of the major functionality. The Command Window is where
you run (execute) MATLAB® statements, while the Command History is a
log of the statements you have run.

The Command Window (p. 3-3) Access the Command Window.

Running Functions and Programs,
and Entering Variables (p. 3-6)

Enter statements at the prompt.
Run M-files, interrupt programs,
run external programs, and examine
errors. Evaluate and open selections.

Controlling Input (p. 3-14) Consider case sensitivity, enter long
statements, edit statements, and use
syntax highlighting and keyboard
shortcuts.

Controlling Output (p. 3-29) Suppress, page and format output,
clear and print contents, and save a
session.

Searching in the Command Window
(p. 3-33)

Use the Find dialog or incremental
search features to find content in the
Command Window.

3 Running Functions — Command Window and History

Preferences for the Command
Window (p. 3-39)

Specify options for text, display, tab
size, accessibility, and indenting
for the Command Window and the
Editor/Debugger.

Command History Window (p. 3-48) View session histories. Run
statements, copy entries, search, and
print the history. Set preferences.

Preferences for Command History
(p. 3-59)

Specify how often to automatically
save the history file and the types of
statements to exclude.

3-2

The Command Window

The Command Window

In this section...

“About the Command Window” on page 3-3

“Opening the Command Window” on page 3-3

“Command Window Prompt” on page 3-4

“Getting Started Message Bar in the Command Window” on page 3-4

About the Command Window
The Command Window is one of the main tools you use to enter data, run
MATLAB® functions and other M-files, and display results. If you have an
active Internet connection, you can Working in the Development Environment
video demo for an overview of the major functionality.

Opening the Command Window
When the Command Window is not open, access it by selecting Command
Window from the Desktop menu. Alternatively, open the Command Window
with the commandwindow function.

If you prefer a simple command line interface without the other MATLAB
desktop tools, select Desktop > Desktop Layout > Command Window
Only. For more information, see “Arranging the Desktop” on page 2-6.

3-3

3 Running Functions — Command Window and History

Command Window Prompt
The Command Window prompt, >>, is where you enter statements. For
example, you can enter a MATLAB function with arguments, or assign
values to variables. The prompt indicates that MATLAB is ready to accept
input from you. When you see the prompt, you can enter a variable or run a
statement. This prompt is also known as the command line.

When MATLAB displays the K>> prompt in the Command Window, MATLAB
is in debug mode. Type dbquit to return to normal mode. For more
information, see Chapter 6, “Editing and Debugging M-Files”

MATLAB displays the EDU>> prompt for the MATLAB Student Version.

Getting Started Message Bar in the Command
Window
Just below the Command Window menu bar is a message bar that includes
links to a video, demos, and information on getting started with MATLAB.

3-4

The Command Window

If you want to remove the message bar in the Command Window, click the
Close box in the right corner of the bar.

If after having closed it, you want to display the information bar again, use
“Preferences for the Command Window” on page 3-39.

In addition to the message bar, there are other ways to access the
documentation and demos, including using the Help menu in most tools. One
way to get help for a function in the Command Window is to position the
cursor in a function name, right-click, and select Help on Selection from
the context menu. By default, the reference page for that function opens in a
popup window. If the reference page does not exist, the M-file help appears.
For more information, see “Getting Help on Selection for Functions” on page
4-50. For more general information on help, see Chapter 4, “Getting Help in
MATLAB® Software”.

3-5

3 Running Functions — Command Window and History

Running Functions and Programs, and Entering Variables

In this section...

“Running Statements at the Command Line Prompt” on page 3-6

“Running External Programs” on page 3-8

“Evaluating or Opening a Selection” on page 3-11

“Displaying Hyperlinks in the Command Window” on page 3-12

Running Statements at the Command Line Prompt

Entering Variables and Running Functions
At the prompt, enter data and run functions. For example, to create A, a
3-by-3 matrix, type

A = [1 2 3; 4 5 6; 7 8 10]

When you press the Enter or Return key after typing the line, the MATLAB®

software responds with

A =

1 2 3
4 5 6
7 8 10

To run a function, type the function including all arguments and press Enter
or Return. MATLAB displays the result. For example, type

magic(2)

and MATLAB returns

ans =
1 3
4 2

3-6

Running Functions and Programs, and Entering Variables

Definition of a Statement. All of the information you type before pressing
Enter or Return is known as a statement. This can include:

• Variable assignments: For example, a = 3

• Commands: M-files provided with MATLAB or toolboxes that do not accept
input arguments, for example, clc, which clears the Command Window.

• Scripts: M-files (MATLAB program files) you write that do not take input
arguments or return output arguments, for example, myfile.m.

• Functions and their arguments: M-files that can accept input arguments
and return output arguments, for example, magic.

Some functions support a form that does not require an input argument,
thereby operating as commands. For convenience, the term function is used to
refer to both functions and commands.

When you enter program control statements, such as if ... end, the
prompt does not appear until you complete the set of functions. In the
following example, you press Enter at the end of each line, but the prompt
does not appear until you complete the set of statements with end.

Running M-Files
Run M-files, files that contain code in the MATLAB language, the same way
that you would run any other MATLAB function. Type the name of the M-file
in the Command Window and press Enter or Return. The M-file must be

3-7

3 Running Functions — Command Window and History

in the current directory of MATLAB or on the search path — for details, see
“Search Path” on page 5-33. You can also use the run function and specify
the full pathname to an M-file script.

To determine the name of the M-file currently running, use mfilename.

Examining Errors
If an error message appears when you run an M-file, click the underlined
portion of the error message, or position the cursor within the filename
and press Ctrl+Enter. The offending M-file opens in the Editor/Debugger,
scrolled to the line containing the error.

Processing Order
In MATLAB, you can only run one process at a time. If MATLAB is busy
running one function, any further statements you issue are buffered in a
queue. The next statement will run when the previous one finishes.

Interrupting a Running Program
You can stop a running program by pressing Ctrl+C or Ctrl+Break at any
time. On Apple® Macintosh® platforms, you can also use Command+. (the
Command key and the period key) to stop the program. For certain operations,
stopping the program might generate errors in the Command Window.

For M-files that run a long time, or that call built-ins or MEX-files that run a
long time, Ctrl+C does not always effectively stop execution. Typically, this
happens on Microsoft® Windows® platforms rather than The Open Group
UNIX® platforms. If you experience this problem, you can help MATLAB
break execution by including a drawnow, pause, or getframe function in your
M-file, for example, within a large loop. Note that Ctrl+C might be less
responsive if you started MATLAB with the -nodesktop option (an option
only for UNIX platforms).

Running External Programs
The exclamation point character, !, sometimes called bang, is a shell escape
and indicates that the rest of the input line is a command to the operating
system. Use it to invoke utilities or call other executable programs without
quitting MATLAB. On UNIX platforms, for example,

3-8

Running Functions and Programs, and Entering Variables

!vi yearlystats.m

invokes the vi editor for a file named yearlystats.m. After the external
program completes or you quit the program, the operating system returns
control to MATLAB. Add & to the end of the line, such as

!dir &

on Windows platforms to display the output in a separate window or to run
the application in background mode. For example

!excel.exe &

opens Microsoft® Excel® software and returns control to the Command
Window so you can continue running MATLAB statements.

The maximum length of the argument list provided as input to the bang (!)
command is determined by any restrictions maintained within the operating
system. If you are running the Microsoft Windows Server® 2003 operating
system, for example, the length of the argument list input to the bang
command cannot exceed 512 characters.

See the reference pages for the unix, dos, and system functions for details
about running external programs that return results and status.

Note To execute operating system commands with specific environment
variables, include all commands to the operating system within the system
call. Separate the commands using & (ampersand) for DOS, and ; (semicolon)
for UNIX platforms. This applies to the MATLAB ! (bang), dos, unix, and
system functions. Another approach is to set environment variables before
starting MATLAB.

On Macintosh platforms, you cannot run AppleScript® (from Apple) directly
from MATLAB. However, you can run the Apple Mac OS® X osascript
function from the MATLAB unix or ! (bang) function to run AppleScript
from MATLAB.

3-9

3 Running Functions — Command Window and History

UNIX® Platforms System Path for Running UNIX® Programs
from the MATLAB® Software
To run a UNIX program from MATLAB if its directory is not on the UNIX
system path MATLAB uses, take one of the actions described here.

Change Current Directory in MATLAB Environment. Change the current
directory in MATLAB to the directory that contains the program you want to
run.

Modify the UNIX System Path that MATLAB Software Uses. Add the
directories to the system path from the shell. The exact steps depend on your
shell. This is an example using sh:

1 At the system command prompt, type

export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory that contains the program you want
to run.

2 Start MATLAB.

3 In the MATLAB Command Window, type

!echo $PATH

The directory containing the file is added to the system path that MATLAB
uses. This change applies only to the current session of the terminal window.

Automatically Modify System Path When the MATLAB Software
Starts. If you want to add a directory to the PATH environment variable each
time you start MATLAB, perform these steps:

1 In a text editor, open the file MATLAB/bin/matlab. This file is used to
start MATLAB.

2 Add this line to the beginning of the matlab file

export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory you want to add to the path.

3-10

Running Functions and Programs, and Entering Variables

If you run a tsch shell instead of a bash shell, use setenv instead of export.

3 Save the file.

The matlab file will modify the PATH environment variable, and then start
MATLAB.

Evaluating or Opening a Selection
Make a selection in the Command Window and press Enter or Return. The
selection is appended to whatever is at the prompt, and MATLAB executes it.

Similarly, you can select a statement from any MATLAB desktop tool,
right-click, and select Evaluate Selection from the context menu.
Alternatively, after making a selection, use the shortcut key, F9, or for some
tools, press Enter or Return. For example, you can scroll up in the Command
Window, select a statement you entered previously, and then press Enter to
run it. If you try to evaluate a selection while MATLAB is busy, for example,
running an M-file, execution waits until the current operation is done.

You can open a function, file, variable, or Simulink® model from the Command
Window. Select the name in the Command Window, and then right-click and
select Open Selection from the context window. This runs the open function
for the item you selected so that it opens in the appropriate tool:

• M-files and other text files open in the Editor/Debugger.

• Figure files (.fig) open in a figure window.

• Variables open in the Variable Editor.

• Models open in Simulink software.

See the open reference page for details about what action occurs if there are
name conflicts. If no action exists to work with the selected item, Open
selection calls edit.

Function Alternative
Use open or edit to open a file in the Editor/Debugger. Use type to display
the M-file in the Command Window.

3-11

3 Running Functions — Command Window and History

Displaying Hyperlinks in the Command Window
You can use MATLAB functions to create hyperlinks in the Command
Window. The created hyperlink can:

• Open a Web page in a MATLAB browser using an href string.

• Transfer files via the file transfer protocol (FTP).

• Run a MATLAB M-file using the matlabcolon (matlab:) command.

Hyperlinks to Web Pages
When creating a hyperlink to a Web page, append a full hypertext string on
a single line as input to the disp or fprintf command. For example, the
command

disp('The MathWorks Web Site')

displays the hyperlink

The MathWorks Web Site

in the Command Window.

When you click this link, a MATLAB Web browser opens and displays the
requested page.

Transferring Files via FTP
To create a link to an FTP site, enter the site address as input to the disp
command as shown below.

disp('The MathWorks FTP Site')

This command displays

The MathWorks FTP Site

as a link in the Command Window.

When you click this link, a MATLAB browser opens and displays the
requested FTP site.

3-12

http://www.mathworks.com
ftp://ftp.mathworks.com

Running Functions and Programs, and Entering Variables

Clicking a Hyperlink to Run MATLAB® Functions
Use matlab: to run a specified statement when you click a hyperlink in the
Command Window. For example

disp('Generate magic square')

displays

When you click the link Generate magic square, MATLAB runs magic(4).
Alternatively, you can press Ctrl+Enter if the cursor is positioned in the link
text. You can use the disp, error, fprintf, or warning function with this
feature. Change the hyperlink color using Colors Preferences — see “Colors
Preferences for Desktop Tools” on page 2-81. For more information, including
examples, see the matlabcolon (matlab:) reference page.

3-13

3 Running Functions — Command Window and History

Controlling Input

In this section...

“Case and Space Sensitivity” on page 3-14

“Syntax Highlighting” on page 3-15

“Matching Delimiters (Parentheses)” on page 3-16

“Cut, Copy, Paste, and Undo Features” on page 3-16

“Enter Multiple Lines Without Running Them” on page 3-17

“Entering Multiple Functions in a Line” on page 3-17

“Entering Long Statements (Line Continuation)” on page 3-17

“Recalling Previous Lines” on page 3-18

“Tab Completion in the Command Window” on page 3-19

“Keyboard Shortcuts in the Command Window” on page 3-25

“Navigating Above the Command Line” on page 3-28

Case and Space Sensitivity

Uppercase and Lowercase for Variables
With respect to case, the MATLAB® language requires an exact match for
variable names. For example, if you have a variable a, you cannot refer
to that variable as A.

Uppercase and Lowercase for Files and Functions
With respect to functions, filenames, objects, and classes on the search path
or in the current directory, MATLAB prefers an exact match with regard to
case. MATLAB runs a function if you do not enter the function name using
the exact case, but displays a warning the first time you do this.

To avoid ambiguity and warning messages, always match the case exactly. It
is a best practice to use lowercase only when running and naming functions.
This is especially useful when you use both Microsoft® Windows® and The

3-14

Controlling Input

Open Group UNIX® platforms because their file systems behave differently
with regard to case.

Note that if you use the help function, function names are shown in all
uppercase, for example, PLOT, solely to distinguish them. Some functions for
interfacing toSun Microsystems™ Java™ software do use mixed case and the
M-file help and documentation accurately reflect that.

Examples. The directory first is at the top of the search path and contains
the file A.m. If you type a instead of A, MATLAB runs A.m but issues a
warning. When you type a again during that session, MATLAB runs A.m but
does not show the warning.

Add the directory second after first on the search path, with the file a.m in
second. The directory first contains A.m, while second contains a.m Type a.
MATLAB runs a.m but displays a warning the first time you do this.

Spaces in Expressions
Blank spaces around operators such as -, :, and (), are optional, but they
can improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

Syntax Highlighting
Some entries appear in different colors to help you better find elements, such
as matching if/else statements. This is known as syntax highlighting. You
can change the colors using preferences. Note that output does not appear
with syntax highlighting, except for errors. For more information, see “Colors
Preferences for Desktop Tools” on page 2-81.

3-15

3 Running Functions — Command Window and History

Matching Delimiters (Parentheses)
You can set a preference for MATLAB to notify you about matched and
unmatched delimiters. For example, when you type a parenthesis, bracket,
or brace, MATLAB highlights the matched delimiter in the pair. To set
these preferences, select File > Preferences > Keyboard > Delimiter
Matching. This feature is also available in the Editor/Debugger.

For more information, see “Delimiter Matching” on page 3-45.

Cut, Copy, Paste, and Undo Features
Use the Cut, Copy, Paste, Undo, and Redo features from the Edit menu
when working in the Command Window. You can also access some of these
features in the context menu for the Command Window.

Undo applies to some of the actions listed in Edit menu. You can undo
multiple times in succession until there are no remaining actions to undo.
Select Edit > Redo to reverse an undo.

If you use Enter, you cannot edit a line after entering it, even though you
have not completed the flow. In that event, use Ctrl+C to end the flow, and
then enter the statements again.

3-16

Controlling Input

Enter Multiple Lines Without Running Them
To enter multiple lines before running any of them, use Shift+Enter or
Shift+Return after typing a line. This is useful, for example, when entering
a set of statements containing keywords, such as if ... end. The cursor
moves down to the next line, which does not show a prompt, where you can
type the next line. Continue for more lines. Then press Enter or Return
to run all of the lines.

This allows you to edit any of the lines you entered before you pressing Enter
or Return.

Entering Multiple Functions in a Line
To enter multiple functions on a single line, separate the functions with a
comma (,) or semicolon (;). Using the semicolon instead of the comma will
suppress the output for the command preceding it. For example, put three
functions on one line to build a table of logarithms by typing

format short; x = (1:10)'; logs = [x log10(x)]

and then press Enter or Return. The functions run in left-to-right order.

Entering Long Statements (Line Continuation)
If a statement does not fit on one line, enter three periods (...) , also called
dots, stops, or an ellipsis, at the end of the line to indicate it continues on
the next line. Then press Enter or Return. Continue typing the statement
on the next line. You can repeat the ellipsis to add a line break after each
line until you complete the statement. When you finish the statement, press
Enter or Return.

For items in single quotation marks, such as strings, you must complete the
string in the line on which it was started. For example, completing a string as
shown here

headers = ['Author Last Name, Author First Name, ' ...
'Author Middle Initial']

results in

3-17

3 Running Functions — Command Window and History

headers =
Author Last Name, Author First Name, Author Middle Initial

MATLAB produces an error when you do not complete the string, as shown
here:

headers = ['Author Last Name, Author First Name, ...
Author Middle Initial']

??? headers = ['Author Last Name, Author First Name, ...
Error: Missing variable or function.

Note that MATLAB ignores anything appearing after the ... on a line, and
continues processing on the next line. This effectively creates a comment out
of the text following the ... on a line. For more information, see “Commenting
Out Part of a Statement” on page 6-20.

Recalling Previous Lines
Use the arrow, tab, and control keys on your keyboard to recall, edit, and
reuse functions you typed earlier. For example, suppose you mistakenly enter

rho = (1+ sqt(5))/2

Because you misspelled sqrt, MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, press the up arrow key. The previously
typed line is redisplayed. Use the left arrow key to move the cursor, add the
missing r, and press Enter or Return to run the line. Repeated use of the
up arrow key recalls earlier lines, from the current and previous sessions.
Using the up arrow key, you can recall any line maintained in the Command
History window.

Similarly, specify the first few characters of a line you entered previously and
press the up arrow key to recall the previous line. For example, type the
letters plo and then press the up arrow key. This displays the last line that
started with plo, as in the most recent plot function. Press the up arrow key

3-18

Controlling Input

again to display the next most recent line that began with plo, and so on.
Then press Enter or Return to run the line. This feature is case sensitive.

If the up arrow key moves the cursor up but does not recall previous lines,
clear the accessibility preference. For more information, see “Accessibility”
on page 3-42.

Another way to view and access commands from the current and previous
sessions of MATLAB is with the Command History window — see “Command
History Window” on page 3-48.

Tab Completion in the Command Window
MATLAB helps you automatically complete the names of these items as you
type them in the Command Window:

• Function or model on the search path or in the current directory

• Filename or directory

• Variable, including structures, in the current workspace

• Handle Graphics® property for figure in the current workspace

Type the first few characters of the item name and then press the Tab key.
To use tab completion, you must have the tab completion preference for the
Command Window selected. For details, see “Keyboard Preferences” on page
3-42.

Tab completion is also available in the Editor/Debugger, but there are some
slight differences in usage. See “Tab Completion in the Editor” on page 6-22.

These examples demonstrate how to use tab completion in the Command
Window:

• “Basic Example — Unique Completion” on page 3-20

• “Multiple Possible Completions” on page 3-20

• “Tab Completion for Directories and Filenames” on page 3-23

• “Tab Completion for Structures” on page 3-23

3-19

3 Running Functions — Command Window and History

• “Tab Completion for Properties” on page 3-24

Basic Example — Unique Completion
This example illustrates a basic use for tab completion. After creating a
variable, costs_march, type

costs

and press Tab. MATLAB automatically completes the name of the variable,
displaying

costs_march

Then complete the statement, adding any arguments, operators, or options,
and press Return or Enter to run it. In this example, if you just press
Enter, MATLAB displays the contents of costs_march. If MATLAB does not
complete the name costs_march but instead moves the cursor to the right,
you do not have the preference set for tab completion. If MATLAB displays No
Completions Found, costs_march does not exist in the current workspace.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = cost

and press Tab, MATLAB completes costs_march. You can also select co or
position the cursor after co and press Tab to complete costs_march.

Multiple Possible Completions
If there is more than one name that starts with the characters you typed,
when you press the Tab key, MATLAB displays a list of all names that start
with those characters. For example, type

cos

and press Tab. MATLAB displays

3-20

Controlling Input

The resulting list of possible completions includes the variable name you
created, costs_march, but also includes functions that begin with cos,
including cosets from the Communications Toolbox™ software, if it is
installed on the system and on the search path in MATLAB. MATLAB
completes variable names in the currently selected workspace, and the names
of functions and models on the search path or in the current directory.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. MATLAB selects the first item in the list
that matches what you typed, in this case, costs_march. Press Enter (or
Return) or Tab to select that item, which completes the name at the prompt.
In the example, MATLAB displays costs_march at the prompt. Add any
arguments, and press Enter again to run the statement.

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Escape. Note that the list of possible
completions might include items that are not valid commands, such as private
functions.

3-21

3 Running Functions — Command Window and History

Narrowing Completions Shown. You can narrow the list of completions
shown by typing a character and then pressing Tab if the Command Window
preference Tab key narrows completions is selected. This is particularly
useful for large lists. For example, type cam and press Tab to see the possible
completions. There is a scroll bar with the list because there are too many
completions to be seen at once.

Type p and press Tab again. MATLAB narrows the list, showing only all
possible camp completions.

3-22

Controlling Input

Continue narrowing the list in the same way. For the above example, type o
and press Tab to further narrow the list. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Directories and Filenames
Tab completion works for directories and filenames in MATLAB functions.
For example, type

edit d:/

and press Tab.

MATLAB displays the list of directories and files in d, from which you can
choose one. For example, type

mym

and press Tab.

MATLAB displays

edit d:/mymfiles/

where mymfiles is the only directory on your d drive whose name begins with
mym. Continue using tab completion to display and complete directory names
or filenames until you finish the edit statement.

Tab completion for directories and filenames is not supported for functions
you write.

Tab Completion for Structures
For structures in the current workspace, after the period separator, press
Tab. For example, type

mystruct.

and press Tab to display all fields of mystruct. If you type a structure and
include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

3-23

3 Running Functions — Command Window and History

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct
contains no other fields that begin with n.

Tab Completion for Properties
Complete property names for figures in the current workspace using tab
completion, as in this graphics example. Here, f is a figure. Type

set(f, 'pap

and press Tab. MATLAB displays

Select a property from the list. For example, type

u

and press Enter. MATLAB completes the property, including the closing
quote.

set(f, 'paperunits'

Continue adding to the statement, as in this example

set(f, 'paperunits', 'c

and press Tab. MATLAB automatically completes the property

3-24

Controlling Input

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

Keyboard Shortcuts in the Command Window
Following is the list of arrow and control keys that serve as shortcuts for using
the Command Window. In addition to these shortcut keys (sometimes called
hot keys), you can use shortcuts for menu items, which you can view on the
menus, as well as general desktop shortcuts described in “Keyboard Shortcuts”
on page 2-40. If you select the Emacs (MATLAB standard) preference for
key bindings (see “Command Window Key Bindings” on page 3-43 for an
explanation), you can also use the Ctrl+key combinations shown in the table.

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Ctrl+P Recall previous line — for details, see
“Recalling Previous Lines” on page 3-18.
See also “Command History Window” on
page 3-48, which is a log of previously
used functions, and “Keeping a Session
Log” on page 3-32.

With the Accessibility preference
selected, moves the cursor up a line when
it is above the prompt. In that event,
use Ctrl+ to recall previous lines for
key bindings for MicrosoftWindows and
Apple®Macintosh® platforms.

3-25

3 Running Functions — Command Window and History

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Ctrl+N Recall next line — for details, see
“Recalling Previous Lines” on page 3-18.
Works only after using the up arrow or
Ctrl+P.

With the Accessibility preference
selected, moves the cursor down a line
when it is above the prompt. In that event,
use Ctrl+ to recall previous lines for
key bindings for Windows and Macintosh
platforms.

Ctrl+Home None Home Move to top of Command Window.

Ctrl+End None End Move to end of Command Window.

None None Cmd+Home Move cursor and scroll to top of Command
Window.

None None Cmd+End Move cursor and scroll to end of Command
Window.

None None Shift+Cmd+Home Select to top of Command Window.

None None Shift+Cmd+End Select to end of Command Window.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+ None Option+ Move left one word.

Ctrl+ None Option+ Move right one word.

Home Ctrl+A Cmd+ Move to beginning of current statement.
With key bindings for Macintosh
platforms, move to beginning of current
line.

3-26

Controlling Input

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

End Ctrl+E Cmd+ Move to end of current statement. With
key bindings for Macintosh platforms,
move to end of current line.

Esc Ctrl+U Esc Clear the command line when cursor is
at the command line. Otherwise, move
cursor to command line.

Delete Ctrl+D Forward Delete Delete character after cursor.

Backspace Ctrl+H Delete Delete character before cursor.

None Ctrl+K None Cut contents (kill) from cursor to end of
current line.

Insert None None Change to overwrite mode from insert
mode, or change to insert mode from
overwrite mode. View current mode in
the status bar: OVR is gray for insert
mode. In overwrite mode, what you type
replaces existing text and the cursor is a
wide block. (Not supported on Macintosh
platforms.)

Double-click None Double-click Select current word. To select additional
words, hold mouse after second click and
continue dragging left or right.

None None Shift+Option+ Select to previous word.

None None Shift+Option+ Select to next word.

Triple-click None None Select current line. To select additional
lines, hold mouse after second click and
continue dragging up or down.

3-27

3 Running Functions — Command Window and History

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Shift+Home None Shift+Cmd+ Select from cursor to beginning of
statement. With key bindings for
Macintosh platforms, select to beginning
of line.

Shift+End None Shift+Cmd+ Select from cursor to end of statement.
With key bindings for Macintosh
platforms, select to end of line.

Enter in
selection

None None Append selection to statement at
command line and execute it.

Ctrl+Enter
in hyperlink

None Ctrl+Enter in
hyperlink

Open hyperlink displayed in Command
Window. For example, in the hyperlink
of an error message, opens the file in the
Editor/Debugger at that line number.

Navigating Above the Command Line
To look at or copy information in the Command Window that is above the
command line (>> prompt), use the mouse and scroll bar, key combinations
such as Ctrl+Home, and search features. By default, the up and down arrow
keys recall statements so you cannot use them to move the cursor when it
is above the command line.

To use the up and down arrow keys to move the cursor when it is above the
command line, select File > Preferences > Command Window, and select
the Accessibility preference.

3-28

Controlling Output

Controlling Output

In this section...

“Echoing Execution” on page 3-29

“Suppressing Output” on page 3-29

“Paging of Output in the Command Window” on page 3-29

“Formatting and Spacing Numeric Output” on page 3-30

“Clearing the Command Window” on page 3-31

“Printing Command Window Contents” on page 3-32

“Keeping a Session Log” on page 3-32

Echoing Execution
To display each function within a statement as it executes, run echo on. For
details, see the echo reference page.

Suppressing Output
If you end a statement with a semicolon (;) and then press Enter or Return,
the MATLAB® software runs the statement but does not display any output.
This is particularly useful when you generate large matrices. For example,
running

A = magic(100);

creates A but does not show the resulting matrix in the Command Window.

See also the display reference page.

Paging of Output in the Command Window
If output in the Command Window is lengthy, it might not fit within the
screen and display too quickly for you to see it without scrolling back to it. To
avoid that problem, use the more function to control the paging of output in
the Command Window. By default, more is off.

3-29

3 Running Functions — Command Window and History

After you type more on, MATLAB displays only a page (a screen full) of
output, pauses, and displays

--more--

indicating there is more output to display. Press one of the following keys.

Key Action

Enter or Return To advance to the next line

Space Bar To advance to the next page

q To stop displaying the output

You can scroll in the Command Window to see input and output that are no
longer in view. As an alternative to scrolling, you can use the up and down
arrow keys if the Command Window Accessibility preference is selected.

Formatting and Spacing Numeric Output
By default, numeric output in the Command Window is displayed as 5-digit
scaled, fixed-point values, called the short format. To change the numeric
format of output for the current and future sessions, set the Command
Window preference for text display. The text display format affects only how
numbers are shown, not how MATLAB computes or saves them.

Function Alternative
Use the format function to control the output format of the numeric values
displayed in the Command Window. The format you specify applies until you
change it or until the end of the session. More advanced alternatives are
listed in the “See Also” section of the format reference page.

Examples of Formats
Here are a few examples of the various formats and the output produced from
the following two-element vector x.

x = [4/3 1.2345e-6]

format short

3-30

Controlling Output

1.3333 0.0000

format short e
1.3333e+000 1.2345e-006

format +
++

A complete list and description of available formats is in the reference page
for format. For more control over the output format, use the sprintf and
fprintf functions.

Controlling Spacing
To control spacing in the output, use the Command Window preference for
text display or the format function. Use

format compact

to suppress blank lines, allowing you to view more information in the
Command Window. To include the blank lines, which can help make output
more readable, use

format loose

Clearing the Command Window
Select Clear Command Window from the Edit menu or context menu
to clear it. This does not clear the workspace, but only clears the view.
Afterwards, you still can use the up arrow key to recall previous functions. A
confirmation dialog box appears if you select the preference for it; for more
information, see “Confirmation Dialogs Preferences” on page 2-69.

Function Alternative
Use clc to clear the Command Window. Similar to clc is the home function,
which moves the prompt to provide a clear screen, but does not clear the
text so you can still scroll up to see it.

3-31

3 Running Functions — Command Window and History

Printing Command Window Contents
To print the complete contents of the Command Window, select File > Print.
To print only a selection, first make the selection in the Command Window
and then select File > Print Selection.

Specify printing options for the Command Window by selecting File > Page
Setup. For example, you can print with a header. For more information, see
“Printing and Page Setup Options for Desktop Tools” on page 2-53.

Keeping a Session Log

The diary Function
The diary function creates a copy of your session in MATLAB on a disk file,
including keyboard input and system responses, but excluding graphics. You
can view and edit the resulting text file using any text editor, such as the
Editor/Debugger. To create a file on your disk called sept23.out that contains
all the functions you enter, as well as output from MATLAB, enter

diary('sept23.out')

To stop recording the session, use

diary('off')

To view the file, run

edit('sept23.out')

Other Session Logs
There are two other means of viewing session information:

• The Command History window contains a log of all functions executed
in the current and previous sessions—see “Command History Window”
on page 3-48

• The logfile startup option—see “Startup Options” on page 1-18.

3-32

Searching in the Command Window

Searching in the Command Window

In this section...

“Introduction” on page 3-33

“Find Dialog Box” on page 3-33

“Incremental Search” on page 3-34

Introduction
You can search for specified text that appears in the Command Window, where
the text was either part of input you supplied, or output displayed by the
MATLAB® software. After finding the desired text, you can copy and paste it
to the prompt in the Command Window to run it, or into an M-file or other file.

See also “Recalling Previous Lines” on page 3-18, “Tab Completion in the
Command Window” on page 3-19, and “Keyboard Shortcuts in the Command
Window” on page 3-25 for techniques to reuse previous statements and
navigate in the Command Window. To find files and text in files, see “Finding
Files and Content Within Files” on page 5-60.

Find Dialog Box
Select Find from the Edit menu to search for specified text in the Command
Window using the Find dialog box. Complete the dialog box. The search
begins at the current cursor position. MATLAB finds the text you specified
and highlights it. Click Find Next or Find Previous to find another
occurrence, or use the keyboard shortcuts F3 and Shift+F3.

3-33

3 Running Functions — Command Window and History

MATLAB beeps when a search for Find Next reaches the end of the
Command Window, or when a search for Find Previous reaches the top
of the Command Window. If you have Wrap around selected, it continues
searching after beeping.

Note that you can only search for text currently displayed in the Command
Window. To increase the amount of information maintained in the Command
Window, increase the setting for the command session scroll buffer size in
Command Window Preferences, and do not clear the Command Window.

Change the selection in the Look in field to search for the specified text in
other MATLAB desktop tools.

Incremental Search
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the Command Window. It is similar to the
Emacs search feature. To use the incremental search feature in the Command
Window,

1 Position the cursor where you want the search to begin.

2 How you begin the incremental search depends on your setting for the
Command Window key bindings preference:

• Press Ctrl+S for Emacs, or

• Press Ctrl+Shift+S for Windows

3 To look for the previous occurrence, press Ctrl+R or Ctrl+Shift+R instead.

An incremental search field, Inc Search, appears at the bottom of the
Command Window and is preceded by F for a forward search, or R when
you are looking for the previous occurrence (reverse search).

3-34

Searching in the Command Window

4 In the Inc Search field, type the text you want to find. For example, look
for Boston.

As you type the first letter, b, the first occurrence of that letter in the
Command Window after the current cursor position is highlighted. For the
example shown, the first occurrence of b is highlighted, the b in Berlin.
Note that incremental search allows for case sensitivity — see “Case
Sensitivity in Incremental Search” on page 3-37.

3-35

3 Running Functions — Command Window and History

When you type the next letter, the first occurrence of the text becomes
highlighted. In the example, when you add the letter o to the b so that the
Inc Search field now has bo, the bo in Boston becomes highlighted.

• If you mistype in the Inc Search field, use the Back Space key to
remove the last letters and make corrections.

• After finding the bo, you can press Ctrl+W to complete that word. In
this example, Boston appears in the Inc Search field.

5 To find the next occurrence of Boston in the Command Window, press
Ctrl+S. To find the previous occurrence of the text, press Ctrl+R

6 If MATLAB beeps, it means either that the text was not found, or the
search wrapped past the end (or beginning) of the Command Window and
continued at the beginning (or end).

3-36

Searching in the Command Window

• When the text is not found, Failing appears in the incremental search
field. Modify the search term in the incremental search field and try
again. Use Ctrl+G to automatically remove characters back to the last
successful search. For example, if plode fails, Ctrl+G removes the de
from the search term because plo does exist in the Command Window.

7 To end the incremental search, press Esc or Enter, or any other key that is
not a character or number.

The Inc Search field no longer appears. The cursor is at the position
where the text was last found, with the search text highlighted.

Incremental search is also available in the Editor/Debugger — see
“Incremental Search” on page 6-53.

Case Sensitivity in Incremental Search
When you enter lowercase letters in the Inc Search field, for example, b,
incremental search looks for both lowercase and uppercase instances of the
letters, for example b and B. However, if you enter uppercase letters, for
example, B, incremental search only looks for instances that match the case
you entered.

3-37

3 Running Functions — Command Window and History

In the example, enter bO in the Inc Search field and incremental search does
not find any matching text.

3-38

Preferences for the Command Window

Preferences for the Command Window

In this section...

“Text, Display, Accessibility, and Tab Size Preferences” on page 3-39

“Keyboard Preferences” on page 3-42

See also:

• “Fonts Preferences for Desktop Tools” on page 2-73

• “Confirmation Dialogs Preferences” on page 2-69

Text, Display, Accessibility, and Tab Size Preferences
To set these preferences for the Command Window, select File > Preferences
and then select Command Window in the left pane of the Preferences dialog
box.

3-39

3 Running Functions — Command Window and History

Text Display
Specify the format, that is, how output appears in the Command Window.

Numeric format. Specify the output format of numeric values displayed in
the Command Window. This affects only how numbers are displayed, not how
the MATLAB® software computes or saves them. The format reference page
includes the list of available formats, with examples.

3-40

Preferences for the Command Window

Numeric display. Specify spacing of output in the Command Window. To
suppress blank lines, use compact. To display blank lines, use loose. For
more information, see the reference page for format.

Display

Wrap lines. Select to make a single line of input or output in the Command
Window break into multiple lines in order to fit within the current width of
the Command Window. This is useful for console mode. With this option
selected, an entire line is visible without scrolling, and the horizontal scroll
bar does not appear because it is not needed. With this option cleared, use the
horizontal scroll bar to view the entire contents of the line.

Set matrix display width to eighty columns. When selected, MATLAB
displays 80 characters of matrix output in a single row, and then continues
displaying output in a new row, regardless of the width of the Command
Window. Use the horizontal scroll bar if the width of the Command Window is
less than 80 characters.

With the check box cleared, a row of matrix output fills the width of the
Command Window, and then continues displaying output in a new row. Note
that if the Wrap lines preference is also selected, and the width of the
Command Window is less than 80 characters, each row of 80 characters of
matrix output wraps to fit within the width of the Command Window.

To determine the number of characters and lines that will display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

When the matrix display width preference is not selected, the number of
characters for the width is based on the current width of the Command
Window. For example, a result of 50, 25 means 50 characters will display
across the Command Window, and 25 lines will display. However, with the
preference selected, the result for that same size Command Window is 80, 25.

3-41

3 Running Functions — Command Window and History

Show getting started message bar. Select to display the getting started
message bar in the Command Window. It appears beneath the menu bar and
contains links to a video, documentation, and demos. For more information,
see “Getting Started Message Bar in the Command Window” on page 3-4

Number of lines in command window scroll buffer. Set the number of
lines maintained in the Command Window, from 1,000 to 25,000. This is the
number of lines you can see when you scroll vertically. A larger buffer means
you can view more lines and it provides a larger base for search features,
but requires more memory.

This preference setting does not impact the number of lines you can recall
when you use the up arrow key in the Command Window. Using the up
arrow key, you can recall all lines shown in the Command History window,
regardless of how many lines you can see in the Command Window.

Accessibility
Select this option to use the up and down arrow keys to move the cursor
when it is above the command line. With this preference selected, use the
Ctrl+ up arrow or down arrow key to recall statements using key bindings
for Microsoft® Windows® and Apple® Macintosh® platforms, or Ctrl+P and
Ctrl+N for MATLAB standard (Emacs) key bindings.

Clear this preference to use the up and down arrow keys to recall statements.
Use the mouse and other features to move the cursor when above the
command line.

Tab key

Tab size. Number of spaces assigned to a tab stop when displaying output.
The default is four spaces, except on The Open Group UNIX® platforms where
the default is eight spaces. This does not apply when the tab completion
preference is selected.

Keyboard Preferences
To set key binding, tab completion, and delimiter matching preferences for the
Command Window and the Editor/Debugger, select File > Preferences and
then select Keyboard in the left pane of the Preferences dialog box.

3-42

Preferences for the Command Window

• “Command Window Key Bindings” on page 3-43

• “Editor/Debugger Key Bindings” on page 3-44

• “Tab Completion” on page 3-44

• “Tabs and Indents” on page 3-45

• “Delimiter Matching” on page 3-45

Command Window Key Bindings
Specify the keyboard shortcuts (key bindings) to be used at the command line.

3-43

3 Running Functions — Command Window and History

MATLAB standard (Emacs). Allows you to use the control keys listed in
“Keyboard Shortcuts in the Command Window” on page 3-25, which should
be familiar to existing users of MATLAB and Emacs software. For example,
Ctrl+A moves the cursor to the beginning of the line.

Windows. Allows you to use standard control keys for Windows platforms.
For example, Ctrl+A is the shortcut for Edit > Select All, which selects the
entire contents of the Command Window.

Macintosh. This option is available only on Macintosh platforms. It allows
you to use Macintosh keys, such as the Command key instead of the Ctrl key.

Editor/Debugger Key Bindings
Specify the keyboard shortcuts (key bindings) to be used by the Editor and for
debugging. The Editor/Debugger key bindings are also used by other tools, for
example, the Callback field in the Shortcut Editor dialog box.

Select Windows, Emacs, or Macintosh (available only on Macintosh
platforms), depending on which convention you want the Editor to follow
for accelerators and shortcuts. The accelerators on the menus change after
you change this option.

For example, when you select key bindings for Windows platforms, the
shortcut to paste a selection is Ctrl+V. When you select Emacs key bindings,
the shortcut to paste a selection is Ctrl+Y. When you select key bindings for
Macintosh platforms, the shortcut to paste a selection is Command+V. You
can see the accelerator on the Edit menu for the Paste item.

Tab Completion

Enable in Command Window. Select the check box to use tab completion
when typing functions in the Command Window. Clear the check box if you
do not want to use the tab completion feature. In that event, when you press
the Tab key, MATLAB moves the cursor to the next tab stop rather than
completing a function — see also the preference for “Tab size” on page 3-42.

3-44

Preferences for the Command Window

Enable in Editor/Debugger. Select the check box to use tab completion
when typing functions in the Editor. Clear the check box if you do
not want to use the tab completion feature. In that event, when you
press the Tab key, MATLAB moves the cursor to the next tab stop
rather than completing a function. For related information, select
File > Preferences > Editor/Debugger > Tab, and click Help.

Tab key narrows completions. Select this check box to narrow the list of
possible completions shown by typing another character and pressing Tab.
For details, see “Narrowing Completions Shown” on page 3-22.

Tabs and Indents
The links go to the panes where you can view and set preferences for

• Tab key size in the Command Window, which is used when the tab
completion preference is not set

• Tab key size and indenting preferences in the Editor/Debugger

Delimiter Matching
To set these preferences, select File > Preferences > Keyboard > Delimiter
Matching . These preferences apply to the Command Window and the
Editor/Debugger.

With these preferences selected, MATLAB alerts you to matched and
unmatched delimiters based on the MATLAB language syntax rules. For
example, when you type a parenthesis or another delimiter, MATLAB
highlights the matched parenthesis or delimiter in the pair.

Delimiter pairs are parentheses (), brackets [], and braces { }. For the
Editor/Debugger , paired language keywords are also matched. Paired
language keywords include for, if, while, else, and end statements.

In the following illustration, MATLAB underlines the left parenthesis in the
pair when you move over the right parenthesis using an arrow key.

3-45

3 Running Functions — Command Window and History

If the matching delimiter is not visible on the screen, a pop-up window appears
and shows the line containing the matching delimiter. In the Editor/Debugger,
the line number is included. Click in the pop-up window to go to that line.

Match while typing. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters as you type them. Then choose
how you want MATLAB to alert you to matches by selecting an entry from
Show match with. When you type a closing (or opening) delimiter in the
Command Window or Editor/Debugger, MATLAB alerts you based on the
option you choose:

• Balance — The corresponding delimiter is highlighted briefly.

• Underline — Both delimiters in the pair are underlined briefly.

• Highlight — Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches using Show
mismatch with. When you type a closing delimiter that does not have an
opening match, MATLAB alerts you based on the option you choose:

• Beep — MATLAB beeps.

• Strikethrough — The delimiter you typed is briefly crossed out.

• None — There is no action.

3-46

Preferences for the Command Window

Match on arrow key. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters when you use an arrow key to
move the cursor over a delimiter. Then choose how you want MATLAB to alert
you to matches by selecting an entry from Show match with. When you
move the arrow over a closing (or opening) delimiter in the Command Window
or Editor/Debugger, MATLAB alerts you based on the option you choose:

• Underline — Both delimiters in the pair are underlined briefly.

• Highlight — Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches by selecting an
entry from Show mismatch with. When you move an arrow key over a
delimiter that does not have a match, MATLAB alerts you based on the option
you choose:

• Beep — MATLAB beeps.

• Strikethrough — The delimiter is briefly crossed out.

• None — There is no alert.

3-47

3 Running Functions — Command Window and History

Command History Window

In this section...

“Overview of the Command History Window” on page 3-48

“Viewing Statements in the Command History Window” on page 3-49

“Using Statements from the Command History Window” on page 3-51

“Searching in the Command History Window” on page 3-52

“Printing the Command History Window” on page 3-57

“Deleting Entries from the Command History Window” on page 3-57

Overview of the Command History Window
The Command History window displays a log of the statements most recently
run in the Command Window. If you have an active Internet connection, you
can watch the Command History video demo for an overview of the major
functionality.

To show or hide the Command History window, use the Desktop menu.
Alternatively, use commandhistory to open the MATLAB® Command History
window when it is closed, or to select it when it is open. For details, see
“Arranging the Desktop” on page 2-6.

�	�������
��)����������
������������	���

$�
���������
�������	��
����	 ��4�
	�)
����������!�
�����
������������4�	
�
����������
���	���

MATLAB provides other options for viewing a history of statements. See
also the following sections:

3-48

Command History Window

• “Recalling Previous Lines” on page 3-18, which describes using the up
arrow in the Command Window

• The diary function reference page

• “Startup Options” on page 1-18, which includes the logfile startup option

Command History File
The Command History window and the Command Window’s feature for
“Recalling Previous Lines” on page 3-18 both use the command history
file, history.m, which is stored in the same directory as preferences for
MATLAB. Type prefdir in the Command Window to see the location of the
file. The command history file is loaded when MATLAB starts, and it stores a
maximum of 20,000 bytes, deleting the oldest entries as needed to maintain
that size.

Statements saved to the history are those that run in the Command Window.
This includes statements you run using the Evaluate Selection item on
context menus in tools such as the Editor, Command History, and Help
browser. The history does not include every action taken in MATLAB,
however, For example, if you run the statement

a = 1:10

and then modify the value of a in the Variable Editor, there is no record in the
history that you modified the value of a.

MATLAB automatically saves the command history file throughout the
session according to the Saving preference you specified. You can choose to
automatically exclude certain statements from being written to the command
history file with the Settings preference. For details, see “Preferences for
Command History” on page 3-59.

Viewing Statements in the Command History
Window
The Command History window lists statements you ran in the current session
and in previous sessions. The time and date for each session appear at the top
of the history of statements for that session. Use the scroll bar or the up and
down arrow keys to move through the Command History window.

3-49

3 Running Functions — Command Window and History

Click - to hide the history for a session, and click + to show it. Select a
timestamp to select all entries for that session. With a timestamp selected,
you can press the + or - key on the numeric keypad to show and hide entries.

3-50

Command History Window

Using Statements from the Command History
Window
You can select entries in the Command History window and then perform the
following actions for the selected entries.

Action How to Perform the Action

Run statements in the
Command Window

Double-click an entry (entries) in the Command History window to
execute the statement(s) in the entries. For example, double-click
edit myfile to open myfile.m in the Editor/Debugger. You can
also run the statements in an entry by right-clicking the entry
and selecting Evaluate Selection from the context menu, or by
selecting an entry and pressing Enter or Return.

Edit and run statements
in the Command Window

Select an entry or entries and then select Copy from the
context menu. Paste the selection into the Command Window.
Alternatively, drag the selection to the Command Window.

Then in the Command Window, edit the statements, and press
Enter or Return to execute them.

Copy statements to
another window

Select an entry or entries and then select Copy from the
context menu. Paste the selection into an open M-file in the
Editor/Debugger or any application. Alternatively, drag the
selection from the Command History window to an open M-file
or another application.

Create an M-file from
statement(s)

Select an entry or entries and then right-click and select Create
M-File from the context menu. The Editor/Debugger opens a
new M-file that contains the statements you selected from the
Command History window.

Create a shortcut from
statement(s)

Select an entry or entries and then right-click and select Create
Shortcut from the context menu. Alternatively, drag the selection
to the Shortcuts toolbar. The Shortcut Editor opens and the
selected statements appear in the Callback field. For more
information, see “MATLAB® Shortcuts — Easily Run a Group of
Statements” on page 2-32.

3-51

3 Running Functions — Command Window and History

Searching in the Command History Window
There are two types of search in the Command History window:

• “Finding Next Entry By Letter” on page 3-52

• “Finding Text” on page 3-56

After finding an entry, you can copy and paste it into an M-file or any file, or
you can right-click and select Evaluate Selection to run the entry.

Finding Next Entry By Letter
Type a letter in the Command History window. The Command History
window searches backwards to find the last previous entry that begins with
that letter as illustrated in this example:

1 Position the cursor at anywhere in the Command History window.

3-52

Command History Window

2 Type the first letters of the entry you want to find. For example, type my.

The Command History window searches backwards and selects the
previous entry that begins with the letters you typed; in this example, you
typed my, and the Command History finds myfor.

As you begin typing that a small yellow-background pop-up window, Search
history for:, appears at the top of the Command History window. This
window keeps track of your search target as you type additional letters
to narrow the focus of your search.

If the search finds a matching entry in a sessions that is collapsed, it
expands the session and selects the entry.

���������
��������� ����(��� ��
���������������	�	���
�
������

3 Now type an s to extend the search to mys. The Command History window
continues to search backwards, stopping next at the function mysurf.

3-53

3 Running Functions — Command Window and History

Finding Multiple Occurrences of the Entry. You can use the up and down
arrow keys to search for the next or the previous occurrence of the entry you
just found.

When you press Ctrl and the up or down arrow key, each occurrence of the
entry remains highlighted while you search for additional instances.

3-54

Command History Window

To highlight all instances of the entry, press Ctrl+A. In the example below, all
instances of entries beginning with my are highlighted.

3-55

3 Running Functions — Command Window and History

Finding Text
Select Find from the Edit menu to search for specified text using the Find
dialog box. Complete the dialog box. The search begins at the current cursor
position. MATLAB finds the text you specified and highlights it. Click Find
Next or Find Previous to find another occurrence, or use the keyboard
shortcuts F3 and Shift+F3. Find looks for visible entries only, that is, it does
not find entries in collapsed nodes.

3-56

Command History Window

MATLAB beeps when a search for Find Next reaches the end of the
Command History window, or when a search for Find Previous reaches the
top of the Command History window. If you have Wrap around selected, it
continues searching after beeping.

Change the selection in the Look in field to search for the specified text in
other MATLAB desktop tools.

Printing the Command History Window
To print the contents of the Command History window, select File > Print or
Print Selection. Specify options for printing by selecting File > Page Setup.
For example, you can print the history with a header. For more information,
see “Printing and Page Setup Options for Desktop Tools” on page 2-53.

The printed version is sized to fit the page. If there is a long statement in
the Command History, the reduced page size might be difficult to read. As
a workaround, either use Print Selection, where the long statement is not
part of the selection, or remove any extremely long statements from the
Command History before printing it.

Deleting Entries from the Command History Window
Delete entries from the Command History window when you feel there are
too many and it becomes inconvenient to find the ones you want. All entries
remain until you delete them, or until the command history file exceeds its
maximum size, at which point MATLAB automatically deletes the oldest
entries—see “Viewing Statements in the Command History Window” on page
3-49.

3-57

3 Running Functions — Command Window and History

To delete entries in the Command History window, first select the entries to
delete, using one of these methods:

• Select a single entry.

• Shift+click or Ctrl+click to select multiple entries.

• Select the timestamp for a session to select all entries for that session.
Then use Shift+click or Ctrl+click to select multiple timestamps with all
of their entries.

Then right-click and select Delete selection from the context menu, or
press the Delete key. A confirmation dialog box might appear; for more
information, see “Confirmation Dialogs Preferences” on page 2-69.

To delete all entries, select Edit > Clear Command History, or select Clear
Entire History from the context menu.

After deleting entries from the Command History window, you will not be able
to recall those statements in the Command Window as described in “Recalling
Previous Lines” on page 3-18.

3-58

Preferences for Command History

Preferences for Command History

In this section...

“Overview of Command History Preferences” on page 3-59

“Settings” on page 3-59

“Saving” on page 3-60

“See Also” on page 3-61

Overview of Command History Preferences
Using Command History preferences, you can choose to exclude statements
from the command history file, history.m, and specify how often to save it.
The command history file is used for both the Command History window and
statement recall in the Command Window.

To set preferences for the command history file, select File > Preferences,
and then select Command History in the Preferences dialog box.

Settings
Specify the types of statements to exclude from the command history file. Note
that when you exclude statements from the command history file, you cannot
recall them in the Command Window as described in “Recalling Previous
Lines” on page 3-18, nor can you view them in the Command History window.

Save Exit/Quit Commands
Select the check box to save exit and quit commands in the command
history file.

Save Consecutive Duplicate Commands
Select the check box if you want consecutive executions of the same statement
to be saved to the command history file.

For example, with this option selected, run magic(5), and then run magic(5)
again. The command history file saves two consecutive entries for magic(5).
With this option cleared, for the same example, the command history file

3-59

3 Running Functions — Command Window and History

saves only one entry for magic(5). If you then run magic(10), the command
history file saves both entries, magic(5) followed by magic(10).

Saving
Use Saving preferences to specify how often to automatically save the
command history file during a session of running the MATLAB® software. By
default, MATLAB saves the history after every statement. This allows you
to more easily recover your state in the event of an abnormal termination,
because you can reconstruct it using the history.

Save History File On Quit
Select this option to save the command history file when you end the session
of MATLAB. If the session does not end via a normal termination, that is, via
the exit or quit functions, File > Exit MATLAB, or the MATLAB desktop
Close box, the history file is not saved for that session.

Save After n Commands
Select this option to save the command history file after n statements are
added to the file. For example, when you select the option and set n to 10,
after every 10 statements are added, the history file is automatically saved.
Use this option instead of Save History File on Quit if you don’t want to
risk losing entries to the saved history because of an abnormal termination,
such as a power failure.

Don’t Save History File
Select this option if you do not want to save the command history file. This
feature is useful when multiple users share the same machine and do not
want other users to view the statements they have run.

Note that any entries already in the history.m file remain. Prior to setting
this preference, you might want to remove any existing entries. Follow the
instructions in “Deleting Entries from the Command History Window” on
page 3-57.

3-60

Preferences for Command History

See Also

• “Command History Window” on page 3-48

• Additional preferences that relate to the Command History:

- “Fonts Preferences for Desktop Tools” on page 2-73

- “Confirmation Dialogs Preferences” on page 2-69

3-61

3 Running Functions — Command Window and History

3-62

4

Getting Help in MATLAB®

Software

The primary means for getting help is the Help browser, which provides
documentation for all your installed products. Other forms of help are
available including M-file help and Technical Support solutions. If you have
an active Internet connection, you can watch the Help and Documentation
video demo for an overview of the major functionality.

Help Browser Overview (p. 4-3) Get information about your
MathWorks™ products using the
Help browser.

Finding Information with the Help
Browser (p. 4-10)

Use the contents listing of the online
documentation, a global index, and
full-text search of documentation
and demos.

Viewing Documentation in the Help
Browser (p. 4-26)

After finding documentation, view
the documentation and perform
other operations in the display pane.

Demos in the Help Browser (p. 4-31) Run demonstration programs, and
view and copy the M-file code behind
them.

Preferences for the Help Browser
(p. 4-37)

Specify fonts used in the Help
browser and limit the documentation
and demos included using the
product filter.

4 Getting Help in MATLAB® Software

Printed Documentation (p. 4-43) Print from the Help browser
or from the PDF version of the
documentation, or purchase printed
documentation.

Help Functions (p. 4-45) Use functions to get information,
such as help and doc.

Getting Help on Selection for
Functions (p. 4-50)

Get help on selection for functions
from within the Editor and the
Command Window.

Other Forms of Help (p. 4-53) Use product-specific help features,
download M-files, contact Technical
Support, see documentation for
other MathWorks products, view a
list of other books, and participate in
a newsgroup for users.

4-2

Help Browser Overview

Help Browser Overview

In this section...

“About the Help Browser” on page 4-3

“Opening the Help Browser” on page 4-3

“Resizing the Help Browser” on page 4-5

“Types of Documentation” on page 4-7

“Accessing Documentation on the Web” on page 4-8

“Adding Your Own Help Files” on page 4-9

“Documentation in Other Languages” on page 4-9

About the Help Browser
The Help browser is an HTML browser integrated with the MATLAB®

desktop. Use the Help browser to search and view documentation and
demonstrations for MATLAB and all other installed MathWorks™ products.
MATLAB automatically installs the documentation and demos for a product
when you install that product.

Opening the Help Browser
To open the Help browser, click the Help button in the desktop toolbar,
type helpbrowser in the Command Window, or use the Help menu in any
tool. There are two panes:

• The Help Navigator, on the left, for finding information, includes a Search
for field, and Contents, Index, Search Results, and Demos tabs. For
more information, see “Finding Information with the Help Browser” on
page 4-10.

• The display pane, on the right, for viewing documentation and demos.

4-3

4 Getting Help in MATLAB® Software

��%��	�������
��������������������!	��
�	����������������	���	������	���

+��������
����%��
����	������������

�	�������������	��
	�������	��
��������

'� �������������%����
��:���������	�����������������

4-4

Help Browser Overview

Resizing the Help Browser
To adjust the relative width of the two panes, drag the separator bar between
them. You can also change the font in either of the panes — see “Help Fonts
and Colors Preferences” on page 4-39.

Once you find the documentation you want, you can close the Help Navigator
pane so there is more screen space to view the information itself. This is
shown in the following figure. To close the Help Navigator pane, click the
Close box in the pane’s upper right corner. To open the Help Navigator
pane from the display pane, click the Help Navigator button on the toolbar.
Alternatively, use the View menu.

4-5

4 Getting Help in MATLAB® Software

4-6

Help Browser Overview

Types of Documentation
The Help browser and help functions provide access to the following types
of information for all installed MathWorks products. The icons shown here
appear in the Help browser contents listing to help you quickly identify
documentation by type.

Icon
Type of
Documentation Description and When to Use

Getting Started Review Getting Started documentation before you begin
using a product or feature for the first time. Then,
to learn more, go to the user guides, reference pages,
demos, and examples.

or

or

Product MATLAB, toolboxes, and related products use orange
book icons . Simulink® software, blocksets, and
related products use blue book icons . Link and Target
products use green book icons .

Index of Examples Accessible via the Help browser Contents listing, this
is an index of the major examples included in the Help
browser documentation.

User Guides (blue) User guide material contains overviews as well as
detailed instructions. Consult it after reviewing Getting
Started material.

Reference Pages
(orange)

Each function has a reference page that provides the
syntax, description, examples, and other information
for that function. Each reference page includes links to
related functions and additional information. Reference
pages are also provided for blocks and properties.

Release Notes An overview of new products and features in a release.
Release Notes also include upgrade information,
links to fixed and known problems, and compatibility
considerations. Review the Release Notes for all your
products when you first start using a new release.
Release Notes for the current version include the release
notes for multiple prior versions.

4-7

4 Getting Help in MATLAB® Software

Icon
Type of
Documentation Description and When to Use

Printable
Documentation

Most products provide access to the online
documentation in a printable format, PDF. Access PDF
files via the Help browser and print them from your
PDF reader, such as the Adobe® Acrobat® product. Most
PDF files reside only on the MathWorks Web site, so you
need an Internet connection to view them.

none Demos MathWorks products come with demonstrations that
run key features of the product. Many of the demos run
MATLAB code. Use the Help browser Demos pane or
Search Results to access demos for the products you
have installed.

none M-File Help Get M-file help in the Command Window to quickly
access basic information for a function or model. It
provides a brief description of a function and its syntax.
It is called M-file help because the text of the help is a
series of comments at the top of the M-file for a function.

Accessing Documentation on the Web
You can access all product documentation on the MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.
These are some uses for the Web site version of the documentation:

• Access documentation for products you have not installed.

• Access documentation for the most current version. If you do not see
the information you are looking for in the Help browser and know you
are not running the most current version of MATLAB, the most current
version of the documentation, which is on the Web site, might include more
information. Note, though, that the documentation on the Web site might
refer to features that are not part of your earlier-version product.

• Access documentation for a prior version of some products (Release 13 with
Service Pack 2). Note that the release notes on this page include release
notes for multiple prior versions. For example, you can find information
about MATLAB Version 6.0 (Release 12) new features and changes.

4-8

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
http://www.mathworks.com/access/helpdesk_r13/help/helpdesk.html
http://www.mathworks.com/access/helpdesk_r13/help/helpdesk.html

Help Browser Overview

• Access documentation via your system Web browser, such as when you are
not running MATLAB or if you prefer your system Web browser.

To determine the URL for a page in the Help browser, see “View the Page
Location” on page 4-30

PDF documentation is available only on the Web site.

You cannot read MATLAB documentation files from the installation media for
MATLAB. You also cannot use a Web browser to read the documentation files
installed with MATLAB because the files are compressed JAR files.

Adding Your Own Help Files
You can add your own HTML help files so that they appear in the Help
browser. For details, see Adding Your Own Toolboxes to the Development
Environment in the HTML documentation (in the Help browser, or on the
Web site).

Documentation in Other Languages
The MathWorks documentation is available in English. Japanese versions of
MATLAB include documentation that has been translated into Japanese. For
more information, go to http://www.cybernet.co.jp/matlab.

4-9

http://www.cybernet.co.jp/matlab

4 Getting Help in MATLAB® Software

Finding Information with the Help Browser

In this section...

“Help Navigator” on page 4-10

“Contents in the Help Browser” on page 4-10

“Index for the Help Browser” on page 4-13

“Search Documentation and Demos with the Help Browser” on page 4-16

“Favorites” on page 4-24

Help Navigator
The Help Navigator is in the left pane of the Help browser. It provides a
table of contents, an index, and a search feature to help you find information.

Contents in the Help Browser
To list the documentation titles and tables of contents for products you
installed, click the Contents tab in the Help Navigator pane. To show
documentation for only some of the installed products, use the product filter.

4-10

Finding Information with the Help Browser

Product Roadmap
When you select a product in the Contents pane (any entry with a book icon

), such as MATLAB® or the Communications Toolbox™ product, a roadmap
of the documentation for that product appears in the display pane. The
roadmap includes links to commonly used documentation sections, including

4-11

4 Getting Help in MATLAB® Software

• Function and block references pages

• An index of major examples in the documentation

• The PDF version of the documentation, which is suitable for printing
(this is the only direct access from the MATLAB software to the printable
documentation)

Navigate the Contents Listing
In the Contents listing, you can

• Click the + to the left of an item to show the first page of that document or
section in the display pane and expand the listing for that item in the Help
Navigator pane. You can alternatively: double-click the item, press the
right arrow key, or press + on the numeric keypad.

• Click the - to the left of an item to collapse the listings for that item. You
can alternatively: double-click the item, press the left arrow key, or press -
on the numeric keypad.

• Select an item to show the first page of that document or section in the
display pane.

• Press * on the numeric keypad to show all subentries for the selection.

• Use the down and up arrow keys to move through the list of items.

Icons in the Contents Listing
Icons for entries in the top levels of the Contents pane listing represent the
type of documentation so you can quickly find the kind of information you need
for a product. See the table for icons in “Types of Documentation” on page 4-7.

Synchronize the Contents Listing and Demos Listing with the
Display Pane
By default, the topic highlighted in the Contents pane matches the title of the
page appearing in the display pane. The Contents pane listing is said to be
synchronized with the displayed document. This feature is useful if you access
documentation with a method other than the Contents pane, for example,
using a link in a page in the display pane, or selecting a search result. With
synchronization, you know what book and section the displayed page is part of,
and where that section fits within the overall book. Note that synchronization

4-12

Finding Information with the Help Browser

only applies to the major headings in a document. For pages that begin with
lower level headings, the Contents pane listing does not synchronize.

You can turn off synchronization. To do so, use preferences. See “General —
Keep Contents Synchronized” on page 4-38.

Synchronization applies to the Contents and Demos panes. The page shown
in the display pane does not necessarily correspond to the selection in the
Index, or Search Results panes. However, if you return to the Contents
pane (or Demos pane), the displayed page synchronizes with the Contents
(or Demos) pane.

This example illustrates synchronization for after performing a search.
When you enter "interactive plotting" in the Search for field, the
Search Results pane displays a list of results in the Help Navigator,
with the first documentation result selected. The display pane shows the
page corresponding to that first result, Plotting Tools Interactive
Plotting. When you click the Contents tab, the tree automatically expands
to show MATLAB > Graphics > Plots and Plotting Tools and selects the
Plotting Tools Interactive Plotting entry.

This example illustrates synchronization for demos. When you run

demo('matlab', 'graphics')

the Demos pane appears, with the MATLAB Graphics entry selected.

Index for the Help Browser
To find specific index entries (selected keywords) in the MathWorks™
documentation for installed products, use the Index in the Help Navigator
pane.

4-13

4 Getting Help in MATLAB® Software

1 Click the Index tab.

2 Type a word or words in the Enter index term field. As you type, the
Index pane displays matching entries and their subentries (indented).
It might take a moment for the display to appear. The index is not case

4-14

Finding Information with the Help Browser

sensitive. If there is not a matching entry, it displays the page for the letter
that your entry begins with.

The product whose documentation includes the matching index entry
is listed next to the index entry, which is useful when there are multiple
matching index entries. You might have to make the Help Navigator
pane wider to see the product.

3 Select a blue index entry from the list (where blue represents a hyperlink)
to display the page to which the term refers. Multiple links per entry are
denoted by numbers in brackets following the term. (Black index entries
are headings and do not link to any page.)

When you select an entry, its color becomes red. The page whose entry
you selected appears in the display pane, scrolled to the location that the
entry references.

4 To see more matching entries, scroll through the list.

Tips for Using the Index

• To see entries for selected products only, select File > Preferences > Help
and set the product filter.

• To see entries for all installed products, select File > Preferences > Help,
and clear the Enable product filter check box.

• For more or different results, type a different term or reverse the order of
the words you type. For example, if you are looking for an entry about
tab completion for Editor, a subentry does not exist. Instead type tab
completion and there is a subentry Editor.

• After selecting an entry, search for specified text in the displayed page
using the Find tool, accessible from the Find button on the display pane
toolbar.

• When there are multiple matching entries, refer to the product associated
with each entry, which appears in the second column of the Index results.
You might need to make the pane wider to see it.

4-15

4 Getting Help in MATLAB® Software

• For different but related results, try using the Search for field—for
instructions, see “Search Documentation and Demos with the Help
Browser” on page 4-16.

• See “Specifying Colors for the Help Browser” on page 4-42 for information
about changing the color of hyperlinks in the Index.

Search Documentation and Demos with the Help
Browser

• “Searching in the Help Browser” on page 4-16

• “Wildcards in Search (Partial Word)” on page 4-21

• “Exact Phrases in Search” on page 4-21

• “Boolean Operators in Search” on page 4-21

• “More About Search” on page 4-22

• “Get Fewer Results” on page 4-22

• “Get More Results” on page 4-23

Searching in the Help Browser
To look for a specific word or phrase in the documentation or demos, use the
Search for field in the Help Navigator.

4-16

Finding Information with the Help Browser

1 To limit (or extend) the products whose documentation and demos are
searched, set the product filter.

4-17

4 Getting Help in MATLAB® Software

2 In the Search for field, type the word or words you want to find and click
Go (or press Enter or Return). Some techniques for honing your search
are

• Exact Phrase — Search for an exact phrase by enclosing words in
quotation marks, for example, "plot tools". For more information, see
“Exact Phrases in Search” on page 4-21.

• Wildcard (Partial Word) — Search for variations of a word, also called
partial word searching, by using the wildcard symbol (*) in place of
letters in a word, for example, plot* tools. For more information, see
“Wildcards in Search (Partial Word)” on page 4-21.

• Boolean Operators — Add the Boolean operators AND, OR, and NOT
between search words to include or exclude words. By default, search
assumes an AND between all search words and exact phrases. For more
information, see “Boolean Operators in Search” on page 4-21.

The documents and demos containing all of the search words are listed in
the Search Results tab. Two sets of results appear: Documentation and
Demo. The number of results for each appears in parentheses at the top
of the listing, and the total number for both sets of results appears in the
lower left corner of the Help browser. Both sets of results have additional
columns that list the Product, and for documentation, another column
lists the Section. You might need to make the Help Navigator pane
wider to see all columns.

3 Select an entry from the list of results. By default, the first documentation
entry is automatically selected. If there are no documentation results, but
there are demo results, the first demo entry is automatically selected.

The selected page appears in the display pane with all occurrences of the
search words and exact phrases highlighted, using a different color for each
search word or phrase. Highlights remain until you view another page or
until you click the Refresh button in the toolbar.

In the display pane, use the Find tool, accessible from the Find button
on the toolbar, to find a specified word in that page.

4 Search results are ordered by relevance. For example, for documentation,
reference pages that match the search term appear first, followed by titles

4-18

Finding Information with the Help Browser

that contain all search words, with pages containing a single instance of
each search word appearing last. Change the display of search results to
more easily find the most relevant results:

• Sort by column — Change the order of the results by clicking a column
heading. For example, click Product to group results by product. Click
Title to sort titles alphabetically. A triangular icon indicates the column
on which you most recently sorted. Click the heading again to sort by the
column but in the reverse order.

After changing the order of results, to see results ordered by relevance,
click Go to rerun the search.

• Reorder columns — Change the location of a column by dragging its
heading to a new position. For example, you can drag the Product
column to the middle for documentation results.

• Resize columns — Make columns wider or narrower by dragging the
separator bar between the column headings. Similarly, make the Help
Navigator wider or narrower.

5 For more results, you can search for the words in the Technical Support
database of bug reports, solutions, and notes on the MathWorks Web site
by clicking the link at the bottom of the Search results pane.

4-19

4 Getting Help in MATLAB® Software

Function Alternative. From the Command Window, use docsearch to open
the Help browser to the Search pane and search for the specified term. For
example

docsearch('publish* html')

finds all pages that contain the word publish or its variations, such as
publishing, published, and so on, and also contains the word html.

docsearch('"plot tools"')

finds all pages containing the exact phrase plot tools.

4-20

Finding Information with the Help Browser

For details, see the docsearch reference page.

Wildcards in Search (Partial Word)
You can use the wildcard character (*) in place of letters or digits in your
search terms. For example, plot* finds various forms of the word plot, such
as plot, plots, and plotting. The search term p*t also finds those variations of
plot as well as variations of print and part, among others.

You can use multiple wildcards in a word or search term. For example, plot*
tool* finds plotting tools, among other terms. The term p*t* tool* finds not
only plotting tools, but also pages containing the words path and toolbox.

You cannot use a wildcard with just one letter or digit, nor can you include
wildcards within an exact phrase. You cannot begin a word in a search term
with a wildcard character. For example, these fail: p*, "plot* tools", plot
*ool.

Exact Phrases in Search
To find a phrase, type quotation marks around it. For example, "plot tools"
finds only pages that include plot tools together, but does not find pages
that include plot in one part of the page and tools in another part of the
page. Specify an exact phrase to reduce the number of irrelevant results. For
example, "plot tools" finds about 10 pages in MATLAB documentation,
while plot tools finds about 100 pages.

You can specify more than one exact phrase, such as "plot tools" "figure
palette" to find pages that contain both "plot tools" and "figure
palette". You cannot use a wildcard within an exact phrase.

Boolean Operators in Search
The search automatically performs a Boolean AND for multiple words. In the
example publish* html, it finds all pages that have the word publish or its
variations, and the word html.

You can refine the search by including the Boolean operators NOT, OR, and AND
between words. The operators must be in all capital letters and there must be
a space before and after each operator. The NOTs are evaluated first, followed
by the ORs, and then the ANDs.

4-21

4 Getting Help in MATLAB® Software

Example Using Boolean Operators in Search. Type

plot* tools NOT time series

to find all pages that contain the words plot or its variations and tools, but
not the phrase time series.

More About Search
These are the guidelines search uses:

• Insignificant words (a, an, the, of) are ignored.

• Search is not case sensitive.

• Search only finds letters and digits, but not symbols. To find a symbol,
look for the word (for example, plus instead of +), use the Index, or
see Operators and Special Characters in the MATLAB Functions — By
Category. Another option is to search the PDF documentation, which
supports searching for symbols — instructions to access the PDF file are
included in “Printing the PDF Version of Documentation” on page 4-43.

• Search find words in comments or code for M-file and Model types demos.
It finds comments in the M-file help for M-GUI demos. It does not search
video demos.

• If you search for a function that is used in multiple products (called an
overloaded function), the reference pages for all those products are listed.
Use the Product column in Search Results to determine the reference
page you want.

Get Fewer Results
If there are too many results for the search to be useful, try the following.

Problem Try These Suggestions

Too many products Select File > Preferences > Help and enable the product filter for
specified products. For details, see “Product Filter” on page 4-37.

Order results by product — click the Product column in Search
Results. If you cannot see the column, make the pane wider.

4-22

Finding Information with the Help Browser

Problem Try These Suggestions

Pages are not about search
word, but just mention it

Try the Index pane to see more important entries for that search
word.

Too many irrelevant
results

Type more than one word in the Search for field.

Look for an exact phrase by enclosing words in quotations marks,
such as "plot tools".

Use Boolean operators (in all capitals), for example, printing AND
figures NOT exporting.

Topic is not relevant Look at the Section column in Search Results, which provides
context for the result. If you cannot see the column, make the pane
wider.

Want to look only within
part of a product’s
documentation

For products like MATLAB, you might want to search only part of
the documentation. There is no way to do this in the Help browser.
However, you might be able to accomplish that via PDF search. For
example, you can search the “MATLAB Getting Started Guide” PDF
file, or the “MATLAB External Interfaces” PDF file. Instructions
to access the PDF file are included in “Printing the PDF Version of
Documentation” on page 4-43.

Get More Results
If you want more results, try the following.

Problem Try These Suggestions

No results for the product Be sure the product filter is set correctly. Select
File > Preferences > Help and disable the product
filter, or at least ensure the products of interest are selected. For
details, see “Product Filter” on page 4-37.

4-23

4 Getting Help in MATLAB® Software

Problem Try These Suggestions

No results but you know
the word should be there

Try variations of the search word by using a wildcard symbol (*).
For example, search for preference* to find all pages that contain
either the word preference or the word preferences.

Not enough information Try searching the Technical Support database of bug reports,
solutions, and technical notes by clicking the link at the bottom of
the Search results pane.

If you are not running the most current version of MATLAB,
try looking at the most current version on the Web site. It
might contain additional information. For more information, see
“Accessing Documentation on the Web” on page 4-8.

See Also. “Finding Files and Content Within Files” on page 5-60, which
describes the Find Files tool you use to look for files and content within files,
such as comments in M-files or code fragments.

Favorites
Favorites are bookmarks to pages in the Help browser documentation and
M-file type demos.

Add Favorites
To designate the displayed page as a favorite (that is, to bookmark it),

1 Select Favorites > Add to Favorites.

2 The Favorites Editor dialog box opens. You can accept the defaults and
click Save, or make changes to the entries:

a Use the Label provided, or change it to another term.

b Do not change the entry for Callback.

c Maintain the Category as Help Browser Favorites so you can access
them from the Favorites menu.

d For Icon, keep the default Help icon, or choose another.

4-24

Finding Information with the Help Browser

A favorite is implemented as a MATLAB shortcut, so the dialog box is
the same as for the Shortcut Editor.

Favorites from previous releases are not migrated to a new release.

Go to Favorites
Select the Favorites menu to view the list of pages you previously designated
as favorites (bookmarks). Select an entry and that page appears in the
display pane.

Organize Favorites
You can rename, remove, and reorder the list of favorites. Select
Favorites > Organize Favorites. For more information, click Help in the
Organize Favorites dialog box.

4-25

4 Getting Help in MATLAB® Software

Viewing Documentation in the Help Browser

In this section...

“About the Display Pane” on page 4-26

“Browse to Other Pages” on page 4-27

“Links” on page 4-28

“Find Text in Displayed Pages” on page 4-28

“Copy Information” on page 4-29

“Evaluate a Selection” on page 4-29

“Open a Selection” on page 4-29

“Get Help for a Selection” on page 4-29

“View the Page Source (HTML)” on page 4-29

“View the Page Location” on page 4-30

About the Display Pane
After finding documentation with the Help Navigator, view the
documentation in the display pane. The following illustration shows the Help
Navigator closed to provide a larger area for viewing the information.

4-26

Viewing Documentation in the Help Browser

Browse to Other Pages
Use the arrow buttons in the page and in the toolbar to go to other pages.

4-27

4 Getting Help in MATLAB® Software

View the next page in a document by clicking the Next page button at the
top or bottom of the page. View the previous page in a document by clicking
the Previous page button at the top or bottom of the page. These arrows
allow you to move forward or backward within a single document. The arrows
at the bottom of the page are labeled with the title of the page they go to.

View the page previously shown by clicking the Back button in the display
pane toolbar. After using the Back button, view the next page shown by
clicking the Forward button in the display pane toolbar. These buttons work
like the forward and back buttons of popular Web browsers. You can also go
back or forward by right-clicking a page and selecting Back or Forward
from the context menu.

Links
Click links in the displayed page to go to a related topic for more information
on the subject. Links appear underlined and in blue, while visited links
appear in purple. Links to Web addresses open in the MATLAB® Web Browser.
Click the middle mouse button to open the linked page in a separate window.

Find Text in Displayed Pages
To find a phrase in the currently displayed page,

1 Click the Find button . In the resulting Find dialog box, type the word
or phrase you are looking for. You can type a partial word, for example,
preference to find all occurrences of preference and preferences. Use
the check boxes to specify options. Click Find Next.

The search begins at the current cursor position and the page scrolls to the
first occurrence of the phrase in the page and highlights it.

2 To find more occurrences in that page, click Find Next or Find Previous
in the Find dialog box, or use the keyboard shortcuts F3 and Shift+F3.

MATLAB beeps when a search for Find Next reaches the end of the page,
or when a search for Find Previous reaches the top of the page. If you
have Wrap around selected, it continues searching after beeping.

4-28

Viewing Documentation in the Help Browser

You can change the selection in the Look in field to search for the specified
text in other MATLAB desktop tools.

See “Search Documentation and Demos with the Help Browser” on page 4-16
for instructions on looking through all the documentation instead of just one
page.

Copy Information
To copy information from the display pane, such as code in an example, first
select the information. Then right-click and select Copy from the context
menu. You can then paste the information into another tool, such as the
Command Window or Editor, or into another application, such as a word
processing application.

Evaluate a Selection
To run code examples that appear in the documentation, select the code in
the display pane. Then right-click and select Evaluate Selection from the
context menu. The statements execute in the Command Window.

Open a Selection
In a page in the display pane, select the name of a file that is provided with
MATLAB, such as an M-file. Then right-click and select Open Selection
from the context menu. The file opens in MATLAB. For example, an M-file
opens in the Editor.

Get Help for a Selection
In a page in the display pane, select the name of a function that is provided
with MATLAB. Then right-click and select Help on Selection from the
context menu. The reference page for that function opens in the Help browser.

View the Page Source (HTML)
To view the HTML source for the currently displayed page, select
View > Page Source. A read-only HTML version of the page appears in a
separate window. You can copy selections from the HTML source and paste

4-29

4 Getting Help in MATLAB® Software

them into other tools like the Editor or Command Window, or into other
applications.

View the Page Location
To view the location of the page currently displayed, select View > Page
Location. The Help Page Location dialog box appears, providing the full
path to the documentation file for both your local system and the MathWorks
Web site.

You can copy the information from this window into an e-mail message or
other tool to facilitate communication with other users or The MathWorks.
For example, if you find a page of documentation that you know would be
useful to a colleague running MATLAB, send them the link so they can view
the page in the Help browser. Note that the docroot function used with the
web function is unsupported, intended only for use by MathWorks™ products.

Click the Go button to view the same documentation page on The MathWorks
Web site. This is useful if you do not see the information you are looking for
on the page in view and know you are not running the most current version
of MATLAB. The documentation for the most current version is on the Web
site and might include more information than the documentation for your
version. Note, though, that the documentation on the Web site might refer
to features that are not part of your earlier-version product. See “Accessing
Documentation on the Web” on page 4-8 for more information.

4-30

Demos in the Help Browser

Demos in the Help Browser

In this section...

“About Demos” on page 4-31

“Using Demos” on page 4-32

“Adding Your Own Demos” on page 4-36

About Demos
The MATLAB® product and related products include demos that you can
access from the Help browser Demos pane.

There are four types of demos:

• M-file: Demos that tell a step-by-step story, including source code,
commentary, and output. They are published from M-file scripts to HTML
output using the Editor. The first comment line of the demo M-file begins
with two comment symbols (%%), and similarly, two comment symbols (%%)
create a cell for each step. The MATLAB Graphics Square Wave from Sine
Waves demo is an M-file type demo.

• M-GUI: Standalone tools for exploring a feature. An example is the
MATLAB Graphics Vibrating Logo demo.

• Model: Simulink® block diagrams. An example is the Engine Timing
Simulation demo.

• Video: Movies that highlight key features in a tool. They play in your
system browser and require the Macromedia Flash Player plug-in. Some
also require an Internet connection. An example is the MATLAB Desktop
and Command Window demo.

The MATLAB code and Simulink blocks used in the demos (except videos) are
available for you to view and copy for use in your own applications.

See also Examples for each product in the Contents pane. These examples
are similar to demos but are integrated in the documentation.

4-31

4 Getting Help in MATLAB® Software

Using Demos
To access demos for the products you have installed,

1 Click the Demos tab in the Help Navigator.

You can also access demos from the Start button, by using the demo
function, or from the Help menu for some tools.

2 Click the + for a product area to list the products or categories that have
demos. Then click + for a product or product category to list its demos.

All demos for that product or product area are listed in the display pane,
and each includes the type of demo along with a thumbnail image that
represents output from the demo.

3 Select a specific demo. Information about the demo appears in the display
pane.

4-32

Demos in the Help Browser

4 You can then view and run the demo, with specific options depending on
the type of demo:

4-33

4 Getting Help in MATLAB® Software

• For M-file demos, click the Open filename in the Editor link at the top
left. This opens the M-file in the Editor. From the Editor, run the demo
step by step by selecting Cell > Evaluate Current Cell and Advance.

You can also click Run in the Command Window, and then follow the
instructions that appear in the Command Window. You might need to
scroll up to see all of the instructions.

See also “Running Demos and Base Workspace Variables” on page 4-35.

• For M-GUI demos, click the Open filename in the Editor link at the
top left. This opens the M-file in the Editor.

Click the Run this demo link at the top right to start the GUI. Then
follow the instructions in the GUI to proceed through the demo.

• For Model demos, click Open this model to open the block diagram.

• For Video demos, click the Run this demo link in the top right to
play the video. These demos run in your system browser and require
the Macromedia Flash Player plug-in. Some also require an Internet
connection.

When you double-click a demo name in the Help Navigator pane, the demo
file opens for M-file and Model demos, or runs for M-GUI and Video demos.

The following example shows the results of running the MATLAB Graphics
Square Wave from Sine Waves demo (xfourier). In it, MATLAB generates
a series of plots, culminating in the final one shown here.

4-34

Demos in the Help Browser

Searching for Demos
You can use the Help browser search feature to find demos. Search find words
in comments or code for M-file and Model types demos. It finds comments
in the M-file help for M-GUI demos. It does not search video demos. For
instructions, see “Search Documentation and Demos with the Help Browser”
on page 4-16.

Running Demos and Base Workspace Variables
M-file demos run as scripts. Their variables are created in the base workspace
for MATLAB. If you have variables in the base workspace when you run an
M-file demo, and the demo uses an identical variable name, there could be
problems due to variable name conflicts. For example, a variable of yours
might be overwritten by the demo. The demo’s variables remain in the base
workspace until you clear them or quit MATLAB.

4-35

4 Getting Help in MATLAB® Software

Function Alternative
To open the Demos pane in the Help browser, type demo in the Command
Window. You can go directly to the demos for a specific product. For example

demo toolbox signal

opens the Demos listing for Signal Processing Toolbox™ product.

To run an M-GUI demo, type the demo name in the Command Window. For
example, type

vibes

to run the MATLAB Graphics demo showing an animated L-shaped
membrane.

To run an M-file demo step by step from the Command Window, type echodemo
followed by the demo name. For example, run

echodemo xfourier

Typing the demo name for an M-file demo runs the demo, but not step by step.

Typing the name of a model demo opens the block diagram.

Adding Your Own Demos
You can add your own demos so they appear in the Demos pane. For details,
see Adding Your Own Toolboxes to the Development Environment in the
HTML documentation (in the Help browser, or on the Web site).

4-36

Preferences for the Help Browser

Preferences for the Help Browser

In this section...

“Product Filter” on page 4-37

“PDF Reader — Specifying Its Location” on page 4-38

“General — Keep Contents Synchronized” on page 4-38

“Help on Selection — Specifying Where It Displays” on page 4-39

“Help Fonts and Colors Preferences” on page 4-39

Product Filter
If you have MathWorks™ products in addition to MATLAB®, such as
Simulink®, toolboxes, and blocksets, set the product filter to limit the product
documentation and demos used:

1 Select File > Preferences > Help.

2 Under Product filter, select the check box for Enable product filter.
Click Select products.

The Help Product Filter dialog box opens.

3 Select the products whose documentation and demos you want to appear
in the Help Navigator. Click OK.

The Help Navigator updates to include only those products you specified.
The product filter settings are saved for your next session of MATLAB.

4 When you want to use documentation and demos for all installed products,
in Help Preferences, clear the check box for Enable product filter.

The Release Notes entry in the Help Product Filter dialog box applies
to the Release Notes overview document for a release, for example, all
products in R2008a, not to the Release Notes for an individual product, for
example, MATLAB Release Notes for R2008a. Release Notes for a product
are considered part of the product’s documentation. For example, MATLAB
Release Notes are considered part of MATLAB, and Communications

4-37

4 Getting Help in MATLAB® Software

Toolbox™ Release Notes are considered part of the Communications Toolbox
documentation when you use the Help Product Filter.

Example Using the Product Filter
If you want to perform a search and have many products installed but know
the information you are seeking is in the MATLAB or Communications
Toolbox product, in the Help Product Filter, click Clear All and then select
MATLAB and Communications Toolbox.

The Contents shows only MATLAB and Communications Toolbox, the Index
shows only entries for MATLAB and Communications Toolbox, and the
Search for feature looks only in and shows only results for MATLAB and
Communications Toolbox documentation and demos. Demos lists only demos
for MATLAB and Communications Toolbox products.

PDF Reader — Specifying Its Location
If you want to view the PDF version of the documentation, use the link on
the roadmap page for that product. To open the PDF file, the Help browser
needs to know the location of your PDF reader (for example, the Adobe®

Acrobat® product).

On Microsoft® Windows® platforms, the MATLAB software reads the PDF
reader location from the registry, so you do not specify its location.

On The Open Group UNIX® platforms, the default PDF reader is Acrobat®

and MATLAB determines its location. If a different command starts your
PDF reader, specify it using preferences. Select File > Preferences > Help,
and enter the full pathname in the PDF reader field or use the Browse for
Folder (...) button to navigate your file system to select it.

General — Keep Contents Synchronized
By default, the displayed page is synchronized with the Contents or Demos
listings. For more information about this feature, see “Synchronize the
Contents Listing and Demos Listing with the Display Pane” on page 4-12.

4-38

Preferences for the Help Browser

To turn synchronization off, select File > Preferences > Help. Under
General, clear the check box for Keep contents tree synchronized with
displayed document. Select the check box to turn synchronization back on.

Help on Selection — Specifying Where It Displays
When you are working in the Editor or the Command Window, you can display
the reference page for a function using the help on selection feature. Use this
preference to specify where the reference page displays:

In pop-up window — the reference page displays in a small pop-up window
in the Editor or Command Window.

In Help browser — the reference page displays in the Help browser.

For details about the feature, see “Get Help for a Selection” on page 4-29.

Note The Help on Selection preference only applies to the help on selection
behavior in the Command Window and Editor. When you use Help on
Selection from the context menu in the Help browser, the reference page
always opens in the Help browser.

Help Fonts and Colors Preferences
Set fonts and colors for the Help browser the same way you would for other
desktop tools. This section describes the process for the Help browser:

• “Specifying Font Name, Style, and Size” on page 4-39

• “Specifying Colors for the Help Browser” on page 4-42

Specifying Font Name, Style, and Size
You can specify the font name (also called font type or family), style, and
size used in the Help Navigator.

For the display pane, you can specify the font name and size for the text font,
but changes do not impact the style. For the code font, your changes to size
apply, but changes to name and style have no impact. The following example

4-39

4 Getting Help in MATLAB® Software

shows the results of specifying Microsoft Comic Sans® MS, bold, 14 point for
the text font; note that the bold has no effect.

4-40

Preferences for the Help Browser

4-41

4 Getting Help in MATLAB® Software

Use the same method as you would to specify fonts for any desktop tool — for
more information, see “Fonts Preferences for Desktop Tools” on page 2-73. By
default, the Help Navigator uses the desktop text font. The display pane
is considered to be an HTML Proportional Text tool, and by default, uses
the desktop text font.

This example changes the display pane font:

1 Select File > Preferences > Fonts > Custom.

2 From the Desktop tools list, select HTML Proportional Text. The Help
browser display pane is considered to be an HTML Proportional Text tool,
as is the MATLAB Web Browser. Changing the font preference affects
both tools.

3 For Font to Use, select Custom, and then specify the font characteristics:

• Name, for example, Comic Sans

• Size in points, for example, 14

After you make a selection, the Sample area shows how the font will look.

4 Click OK. The Help display pane fonts use the new settings. The MATLAB
Web Browser fonts also use the new settings.

Specifying Colors for the Help Browser
You can specify the background and text color used in the Help Navigator.
Use the same method as you would to specify the background color for any
desktop tool — for more information, see “Colors Preferences for Desktop
Tools” on page 2-81.

If the background color preference for your desktop tools is a dark color, you
might not be able to see index entries in the Help Navigator because they
are links, for which the default color is blue. To see the links, change the
Hyperlink color preference to a light or other contrasting color — for more
information, see “Other Colors” on page 2-86.

You cannot specify colors for the Help browser display pane.

4-42

Printed Documentation

Printed Documentation

In this section...

“About Printed Manuals” on page 4-43

“Printing a Page from the Help Browser” on page 4-43

“Printing the PDF Version of Documentation” on page 4-43

About Printed Manuals
Generally, printed manuals are not provided for most products and tools. The
printed manuals typically contain less information, and is also sometimes
less current than the online documentation. If you want to purchase
printed documentation, see the online store at the MathWorks Web site at
http://www.mathworks.com.

Printing a Page from the Help Browser
To print the page currently shown in the Help browser, select File > Print,
or click the Print button in the display pane toolbar. The Print dialog box
appears.

Select All in the Print dialog box to print the entire page shown in the display
pane. Specifying a range of pages, for example, 1 to 3, prints the first three
pages of the page currently shown in the display pane.

Complete the dialog box and click OK to print.

Printing the PDF Version of Documentation
If you need to print more than a few pages of documentation, or if you want
the pages to appear as if they came from a printed book, print the PDF version
of the documentation. PDF documentation is shown and printed using your
PDF reader, usually an Adobe® Acrobat® product. The PDF documentation
reproduces the look and feel of a printed book. In the PDF document, use
links from the table of contents, index, or within the document to go directly
to the page of interest within that document. Note that some documentation
available from the Help browser is not available in PDF format.

4-43

http://www.mathworks.com

4 Getting Help in MATLAB® Software

Note The Help browser accesses PDF documentation from the MathWorks
Web site. Therefore, you need Internet access to view or print PDF
documentation.

1 In the Help browser, click the Contents tab and select a product, for
example, the MATLAB® product.

The roadmap page opens for that product, providing links to key
documentation for that product.

2 Near the end of the roadmap page, listed under Printing the
Documentation Set, are links for printing the documentation. Select the
link for the item you want to print.

The selected document is accessed from the MathWorks Web site. Your
PDF reader opens, displaying the documentation.

If you are using The Open Group UNIX® platform and cannot open the PDF
documentation, check the Help preferences. See “PDF Reader — Specifying
Its Location” on page 4-38 for more information.

3 To print the documentation, select Print from the File menu in your PDF
reader.

4-44

Help Functions

Help Functions

In this section...

“About Help Functions” on page 4-45

“Summary Table of Help Functions” on page 4-45

“View Function Reference Pages — the doc Function” on page 4-46

“Getting Help in the Command Window — the help Function” on page 4-47

About Help Functions
There are several help functions that provide forms of help different than
the Help browser documentation, or provide alternative ways to access the
Help browser information.

Summary Table of Help Functions

Function Description

dbtype Displays specified M-file with line numbers. If you want to see only the
input and output arguments for a function, use dbtype function 1,
which displays the first line of the M-file.

demo Displays the Demos pane in the Help browser, from which you can access
demonstrations for the products you have installed. With an argument,
runs the specified demo.

doc Displays in the Help browser, the reference page for the specified function,
block, or property. Usually more extensive than results for the help
function, the reference page provides syntax, a description, examples,
illustrations, and links to related functions.

docopt On The Open Group UNIX® platforms, this function specifies Web browser
information that is used when displaying Internet Web pages.

docsearch Run the Help browser search feature for the specified term.

help Displays M-file help (a description and syntax) in the Command Window
for the specified function. For MDL-files, displays a description of the
model.

4-45

4 Getting Help in MATLAB® Software

Function Description

helpbrowser Opens the Help browser, the MATLAB® interface for accessing
documentation.

helpdesk Opens the Help browser. In previous releases, helpdesk displayed the
Help Desk, which was the precursor to the Help browser. This function
will be removed in a future release.

helpwin Displays in the Help browser a list of all functions, and provides access to
M-file help for the functions.

lookfor Displays in the Command Window a list and brief description of all
functions whose brief description includes the specified keyword.

web Opens the specified URL in the specified browser. Use web in your own
M-files to display HTML documentation you create for your work.

whatsnew Displays the Release Notes in the Help browser.

View Function Reference Pages — the doc Function
To view the reference page for a function, block, or property in the Help
browser, use doc. For example, type

doc format

to view the reference page for the format function.

Overloaded Functions with the doc Function
When a function name is used in multiple products, it is said to be an
overloaded function. The doc function displays the reference page for the first
function on the search path having that name, and displays a hyperlinked list
of the overloaded functions in the Command Window.

For example, using the default search path

doc set

displays the reference page for the MATLAB set function in the Help browser.
The Command Window displays a hyperlinked list of the set functions located
in other directories, such as

4-46

Help Functions

database/set

which is the set function for the Database Toolbox™ product. Click a link to
go to that set reference page.

To directly get the reference page for an overloaded function, specify the name
of the directory containing the function you want the reference page for,
followed by the function name. For example, to display the reference page for
the set function in theDatabase Toolbox product, type

doc database/set

Some products have more than one function with the same name. For example,
MATLAB includes a built-in get function in the graphics directory and a get
function in the MATLAB serial directory (for serial port functions). Type

doc get

The reference page for the MATLAB graphics built-in get function appears,
and the Command Window lists overloaded functions in other products.
But the list does not include any overloaded functions in the same product.
Therefore, get in the MATLAB serial directory is not listed as an overloaded
function. Type

doc ('get (serial)')

to display the reference page for the get function located in the MATLAB
serial directory.

Getting Help in the Command Window — the help
Function
To quickly view a brief description and syntax for a function in the Command
Window, use the help function. For example, typing

help bar

displays a description and syntax for the bar function in the Command
Window. This is called the M-file help. For other arguments you can supply,
see the reference page for help.

4-47

4 Getting Help in MATLAB® Software

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to distinguish them from
the rest of the text. When typing function names, however, use lowercase
characters. Some functions for interfacing to Sun Microsystems™ Java™ do
use mixed case; the M-file help accurately reflects that, and you should use
mixed case when typing them.

If you need more information than the help function provides, use the doc
function, which displays the reference page in the Help browser. It can include
color, images, links, and more extensive examples than the M-file help. For
example, typing

doc bar

displays the reference page for the bar function in the Help browser.

Overloaded Functions with the help Function
When a function name is used in multiple products, it is said to be an
overloaded function. The help function displays M-file help for the first
function on the search path having that name, and displays a hyperlinked list
of the overloaded functions at the end.

For example, using the default search path

help set

displays M-file help for the MATLAB set function, and displays a hyperlinked
list of the set functions residing in other directories, such as

database/set

which is the set function for the Database Toolbox product. Click a link to
display the M-file help for that set function.

To directly get help for an overloaded function, specify the name of the
directory containing the function you want help for, followed by the function
name. For example, to get help for the set function in the Database Toolbox
product, type

4-48

Help Functions

help database/set

Creating M-File Help for Your Own M-Files
You can create M-file help for your own M-files and access it using the help
command. See the help reference page for details.

Help in the Current Directory Browser
The Help Report and the Contents Report provide other ways of looking at
and managing help for M-files — see “Directory Reports in Current Directory
Browser” on page 7-2.

You can also see the help for an M-file in the Current Directory browser if you
have its preference for Show M, MDL, and MAT file contents selected.

Help for Model Files
Use the help function with an MDL filename to display the complete
description for the model file. For example, run

help 4_dap.mdl

and MATLAB displays the description of the Simulink® F-14
Digital Autopilot High Angle of Attack Mode, as defined in the
Model > Properties > Description.

Multirate digital pitch loop control for F-14 control design
demonstration.

If the Simulink product is installed, you do not need to include the .mdl
extension.

You can see the same description in the Current Directory browser if you have
its preference for Show M, MDL, and MAT file contents selected.

4-49

4 Getting Help in MATLAB® Software

Getting Help on Selection for Functions
While using the Editor or Command Window, you can display the reference
page for a selected function:

1 Select a function or click the pointer within a function for which you want
information.

2 Press F1, or right-click and select Help on Selection.

The reference page for the function opens in a small pop-up window, as
shown for the set function example in the following figure.

4-50

Getting Help on Selection for Functions

3 You can perform the following actions with the pop-up window:

• Move or resize the pop-up window.

• Type in the Editor or Command Window; the pop-up window remains
open.

• Toggle focus between the pop-up window and the Editor or Command
Window by pressing the F1 key.

• Display the reference page for a different function by repeating the steps
1 and 2.

4-51

4 Getting Help in MATLAB® Software

• Open the same reference page in the Help browser by clicking the link at
the bottom of the pop-up window; this closes the pop-up window.

4 To close the pop-up window, click it to make it the active window and then
press the Escape (Esc) key, or use the Close button.

You can specify a preference so the reference page opens in the Help browser
instead of the pop-up window—see “Help on Selection — Specifying Where It
Displays” on page 4-39. When help on selection opens in the Help browser, you
cannot toggle focus between the reference page and the Editor or Command
Window.

4-52

Other Forms of Help

Other Forms of Help

In this section...

“Documentation for Other Products” on page 4-53

“Product-Specific Help Features” on page 4-53

“User-Contributed M-Files” on page 4-53

“Technical Support” on page 4-54

“Newsgroup for MathWorks™ Products” on page 4-54

“Other Resources for Information About MathWorks™ Products” on page
4-55

“Version and License Information” on page 4-55

“Provide Feedback” on page 4-56

Documentation for Other Products
The Help browser provides access to documentation for all products
installed on your system. To view the online documentation
for all MathWorks™ products, use the MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.

Product-Specific Help Features
In addition to the Help browser and help functions, some products and tools
allow other methods for getting help. You will encounter some methods in the
course of using a product, such as entries in the Help menu, Help buttons
in dialog boxes, and selecting Help from a context menu. These methods
all display context-sensitive help. Other methods for getting help, such as
pressing the F1 key, are described in the documentation for the product or
tool that uses the method.

User-Contributed M-Files
You can download M-files contributed by users and developers of MATLAB®,
Simulink®, and related products from MATLAB Central. Before you
write an M-file yourself, especially if it seems to be a generic utility,
check the list of contributed files to see if someone has already written

4-53

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

4 Getting Help in MATLAB® Software

it. These files are freely contributed and can be used without charge by
anyone who downloads them. To view the files available to download, go
to the MATLAB Central File Exchange page on the MathWorks Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp.
You can access this from any desktop component via Help > Web Resources.

If you write M-files that you think would be of use to others, consider
submitting them to the MATLAB Central File Exchange via the Web page.

Technical Support
Technical Support provides help for problems you have with MathWorks
products:

• Find specific Technical Support information using the Help browser
Search feature. Run a search for a specified term. The end of the results
list includes a link that runs the same search on the support database.
This database, on the MathWorks Web site, provides the most up-to-date
solutions, bug reports, and technical notes for questions posed by users.

• Select Help > Web Resources > Support to go to the Support Web
page (http://www.mathworks.com/support). The page displays in your
system’s default Web browser. You can find out about other types of
information such as third-party books, ask questions, make suggestions,
view known bugs and workarounds, and report possible bugs.

• If you cannot access the Web site, e-mail Technical Support using the
address support@mathworks.com. You must provide your license number
to obtain support. It is helpful if you also provide your operating system
and the version number for MATLAB. You can obtain the information by
running the ver function or by selecting Help > About.

Newsgroup for MathWorks™ Products
The Usenet newsgroup for MATLAB and related products,
comp.soft-sys.matlab, (also known as cssm) is read by thousands of users
worldwide. Access the newsgroup to ask for or provide help or advice. You
can read and submit postings as well as view and search through a sizable
archive of postings using the MATLAB Central Newsgroup Access Web page
on the MathWorks Web site, http://www.mathworks.com/matlabcentral.

4-54

http://www.mathworks.com/matlabcentral/fileexchange/index.jsp
http://www.mathworks.com/support
mailto:support@mathworks.com
http://www.mathworks.com/matlabcentral

Other Forms of Help

You can access this via Help > Web Resources > MATLAB Newsgroup
Access from any desktop component.

First-time users to the newsgroup should read the newsgroup FAQ, linked
to from the MATLAB Central page. It is a good practice to try to solve your
own problem using the documentation and Technical Support database before
posting a question to the newsgroup. Be sure to post with a meaningful
subject that briefly describes the nature of the issue.

Other Resources for Information About MathWorks™
Products
Following are some additional resources for help with MATLAB and related
products:

• Newsletters — The MathWorks publishes News and Notes twice
a year, containing feature articles, technical notes, and product
information for users of MATLAB. More frequently, The MathWorks
issues MATLAB Digest, an electronic bulletin consisting of technical
notes, solutions, and timely announcements to the user community.
Select Help > Web Resources > MATLAB Newsletters or see
http://www.mathworks.com/company/newsletters/.

• Books — There are hundreds of books about MATLAB. For a list with
descriptions, see http://www.mathworks.com/support/books/.

• Seminars and Training — The MathWorks regularly presents free
seminars on special topics conducted in various locations. Webinars
on special topics are presented via the Web. The MathWorks offers
training classes for MATLAB and other products. For details, see
http://www.mathworks.com/company/events/.

• Mathtools.net — This is a technical computing Web portal with links to
many resources for users of MATLAB. See http://www.mathtools.net/.

Version and License Information
If you need the version or license information for a product, select About from
the Help menu for that product. The version is displayed in an About dialog
box. If the product does not have a Help menu, use the ver function. To see
the license number for MATLAB, type license in the Command Window. See
also the ver, version, and license reference pages.

4-55

http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/support/books/
http://www.mathworks.com/company/events/
http://www.mathtools.net/

4 Getting Help in MATLAB® Software

You can access information about your passcodes and licenses, as well get trial
versions of products, using Help > Web Resources > MathWorks Account.

Provide Feedback
To report problems or provide comments or suggestions to The MathWorks
about the documentation, help features, or products, use the Provide
feedback on this page link on the top and bottom of every page in the Help
browser.

4-56

5

Workspace, Search Path,
and File Operations

If you have an active Internet connection, you can watch the Workspace
Browser video demo and the Current Directory Browser video demo for an
overview of the major functionality.

MATLAB® Workspace (p. 5-2) The workspace is the set of variables
maintained in memory during a
session of MATLAB®. Use the
Workspace browser or equivalent
functions to view the workspace.

Viewing and Editing Workspace
Variables with the Variable Editor
(p. 5-13)

View and make changes to variables
using the Variable Editor.

Search Path (p. 5-33) The MATLAB software uses a search
path to find M-files and other files
related to MATLAB. View and
change the path using the Set Path
dialog box or equivalent functions.

File Management Operations
(p. 5-45)

Search for, view, open, and make
changes to directories and files
related to MATLAB, using the
Current Directory browser or
equivalent functions.

5 Workspace, Search Path, and File Operations

MATLAB® Workspace

In this section...

“About the Workspace” on page 5-2

“Opening the Workspace Browser” on page 5-3

“Viewing and Editing Values in the Current Workspace” on page 5-4

“Saving the Current Workspace” on page 5-5

“Loading a Saved Workspace and Importing Data” on page 5-7

“Changing and Copying Variable Names” on page 5-8

“Deleting Workspace Variables” on page 5-8

“Viewing Base and Function Workspaces Using the Stack” on page 5-9

“Creating Plots from the Workspace Browser” on page 5-9

“Opening Variables and Objects for Viewing and Editing” on page 5-10

“Preferences for the Workspace Browser” on page 5-10

About the Workspace
The workspace consists of the set of variables built up during a session of
using the MATLAB® software and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.
For example, if you run these statements,

A = magic(4)
R = randn(3,4,5)

the workspace includes two variables, A and R.

You can perform workspace and related operations using the Workspace
browser. When available, equivalent functions are documented with each
feature of the Workspace browser. If you have an active Internet connection,
you can watch the Workspace browser video demo for an overview of the
major functionality:

5-2

MATLAB® Workspace

Opening the Workspace Browser
To open the Workspace browser, select Desktop > Workspace in the
MATLAB desktop, or type workspace at the Command Window prompt.

The Workspace browser opens.

5-3

5 Workspace, Search Path, and File Operations

Viewing and Editing Values in the Current Workspace
The Workspace browser shows the name of each variable or object, the class
(also represented by the icon), its value, and where relevant, the Min, Max,
and Mean calculations. MATLAB performs these calculations using the min,
max, and mean functions, and updates the results automatically. These are
other features of the Workspace browser:

• You can display additional columns, including size (dimensions), size in
bytes, and other common statistical calculations such as mode and standard
deviation. To show or hide columns, select View > Choose Columns or
right-click any column header. To specify the size limit for calculations and
how NaNs are considered, use “Preferences for the Workspace Browser”
on page 5-10.

• To resize a column of information, drag the column header border. To
reorder columns, drag a column header to a new position.

• You can select the column on which to sort as well as reverse the sort order
of any column. Click a column header to sort on that column. Click the
column header again to reverse the sort order in that column. For example,
to sort on Name, click the column header once. To change from ascending
to descending, click the header again. You cannot sort by the Value column
in the Workspace browser.

• You can directly edit variable values in the Workspace browser Value
column. To edit a value, position the pointer in the Value column at the
row you want to edit, click, and type the new value.

• To view more of the data for a variable, as well as to more easily edit
it, double-click a variable name and it opens in the Variable Editor. For
more information, see “Viewing and Editing Workspace Variables with
the Variable Editor” on page 5-13.

Function Alternative
Use who to list the current workspace variables. Use whos to list the variables
and information about size and class. For example:

>> who

Your variables are:

5-4

MATLAB® Workspace

A S avg_score names scores v y
C a b nn t w1 z
R ans l s1 td x

>> whos
Name Size Bytes Class Attributes

A 4x4 128 double
C 1x3 348 cell
R 3x4x5 480 double
S 1x3 826 struct
a 4x4 128 double
ans 3x4x5 480 double
avg_score 1x1 8 double
b 4x4 128 double
l 4x4 16 logical
names 3x12 72 char
nn 3x3 72 double
s1 1x1 4 single
scores 1x3 24 double
t 1x5 10 char
td 1x1 152 TensileData
v 2x5 20 char
w1 1x1 16 double complex
x 1x1 2 int16
y 1x3 12 uint32
z 1x1 8 double

Use exist to see if the specified variable is in the workspace.

Saving the Current Workspace
The workspace is not maintained across sessions of MATLAB. When you quit
MATLAB, the workspace is cleared. You can save any or all of the variables
in the current workspace to a MAT-file, which is a binary file specifically
for use in MATLAB. You can then load the MAT-file at a later time during
the current or another session to reuse the workspace variables. MAT-files
use a .mat extension.

5-5

5 Workspace, Search Path, and File Operations

Note The .mat extension is also used by Microsoft® Access™ software. You
can change the default file association in Microsoft® Windows® to associate
MAT-files with either MATLAB or Access™.

Saving All Variables
To save all of the workspace variables using the Workspace browser:

1 Select File > Save Workspace As from the Workspace browser, or click

the Save button in the Workspace browser toolbar.

The Save to MAT-File dialog box opens.

2 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

3 Click Save.

The workspace variables are saved under the MAT-file name you specified.

Saving Selected Variables
To save some but not all of the current workspace variables:

1 Select the variable in the Workspace browser. To select multiple variables,
Shift+click or Ctrl+click.

2 Right-click, and from the context menu, select Save As.

The Save to MAT-File dialog box opens.

3 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

4 Click Save.

The workspace variables are saved under the MAT-file name you specified.

5-6

MATLAB® Workspace

To specify preferences for saving MAT-files that pertain to compression,
and compatibility between different versions of MATLAB, see “MAT-Files
Preferences” on page 2-66.

Function Alternative
To save workspace variables, use the save function followed by the filename
you want to save to. For example,

save('june10')

saves all current workspace variables to the file june10.mat.

If you don’t specify a filename, the workspace is saved to matlab.mat in the
current directory. You can specify which variables to save, as well as control
the format in which the data is stored, such as ASCII. For these and other
forms of the function, see the reference page for save. MATLAB provides
additional functions for saving information — see “Data Import and Export”
in the MATLAB Programming Fundamentals documentation.

Loading a Saved Workspace and Importing Data
To load saved variables into the workspace,

1 Click the Import Data button on the toolbar in the Workspace browser.

The Import Data dialog box opens.

2 Select the MAT-file you want to load and click Open.

The variables and their values, as stored in the MAT-file, are loaded into
the current workspace. If any variables being loaded have the same names
as variables in the current workspace, the values from the MAT-file replace
the values in the current workspace. Any variables in the MAT-file that are
not in the workspace are added to the workspace.

Caution You will lose data in the workspace if the MAT-file you load
contains variables having the same names as those in the workspace.

5-7

5 Workspace, Search Path, and File Operations

Function Alternative
Use load to open a saved workspace. For example,

load('june10')

loads all workspace variables from the file june10.mat.

Importing Data
MATLAB provides other methods and functions for loading information. One
of these methods is available from the Workspace browser, the Import Wizard.
You can import data you previously copied to the clipboard by selecting
Edit > Paste to workspace or use Ctrl+V. This imports the data using the
Import Wizard. For more information on the Import Wizard, see the “Using
the Import Wizard” in the Programming Fundamentals documentation.

Viewing Variables in MAT-Files
Use the Current Directory browser to view the contents of a MAT-file without
loading the file into MATLAB. For details, see “Current Directory Browser”
on page 5-46.

Function Alternative. Use whos with the -file option.

Changing and Copying Variable Names
To rename a variable in the workspace, right-click the variable in the
Workspace browser and select Rename from the context menu. Type the new
variable name over the existing name and press Enter.

To copy variable names to the clipboard, select the workspace variables and
select Edit > Copy. You can then paste the names, for example, into the
Command Window. Multiple variables are comma separated.

Deleting Workspace Variables
You can delete a variable, which removes it from the workspace:

1 In the Workspace browser, select the variable, or Shift+click or Ctrl+click
to select multiple variables. To select all variables, choose Select All from
the Edit or context menus.

5-8

MATLAB® Workspace

2 Press the Delete key on your keyboard or click the Delete button on
the Workspace browser toolbar.

3 A confirmation dialog box might appear. If it does, click OK to clear the
variables.

The confirmation dialog box appears if you selected that preference. For
more information, see “Confirmation Dialogs Preferences” on page 2-69.

To delete all variables, select Edit > Clear Workspace from any desktop tool.

Function Alternative
Use the clear function to clear variables from the workspace. For example,

clear A M

clears the variables A and M from the workspace.

Viewing Base and Function Workspaces Using the
Stack
When you run M-files, MATLAB assigns each function its own workspace,
called the function workspace, which is separate from the base workspace
in MATLAB. To access the base and function workspaces when running or
debugging M-files, use the Stack field in the Workspace browser. The Stack
field is only available in debug mode and otherwise is grayed out. The Stack
field is also accessible from the Variable Editor and the Editor/Debugger. See
“Finding Errors, Debugging, and Correcting M-Files” on page 6-97for more
information. See also the dbstack and evalin functions.

Creating Plots from the Workspace Browser
From the Workspace browser, you can generate a plot of a variable. To create
a plot, click the Plot button on the Workspace browser toolbar and select
the plot type. The plot appears in a figure window. The button itself changes
to reflect the currently selected style of plot, for example bar or stem.

5-9

5 Workspace, Search Path, and File Operations

This feature is only available for variables whose classes can be plotted, such
as numeric. Open the variable in the Variable Editor for additional plotting
options.

In addition, you can right-click the variable you want to plot. From the
context menu, choose the type of plot you want to create.

You can also Shift+click or Ctrl+click to select multiple variables to plot
together. When one of the variables is named time, t, or T, MATLAB assumes
it is the independent variable.

For more information about creating graphs in MATLAB, see the MATLAB
Graphics documentation.

Opening Variables and Objects for Viewing and
Editing
In the Workspace browser, double-click a variable and it opens in the Variable
Editor where you can view and edit the contents of the variable. See “Viewing
and Editing Workspace Variables with the Variable Editor” on page 5-13 for
more information.

Some toolboxes allow you to double-click an object in the Workspace browser
to open a viewer or other tool appropriate for that object. For details, see the
toolbox documentation for that object type.

Preferences for the Workspace Browser
The Workspace browser displays statistical calculations for variables. Use
preferences to restrict the size of arrays on which calculations are performed
and to specify if NaNs are included or ignored in calculations. Select
File > Preferences to open the dialog box. Make changes and click OK.

5-10

MATLAB® Workspace

Specify Maximum Array Size on Which to Compute Statistics
If you show statistical columns in the Workspace browser, and if you work
with very large arrays, you might experience performance issues when the
data changes as MATLAB updates the statistical results. In that event, show
only the columns of interest to you and hide those you do not need.

Another step you can take is specify via a preference that the Workspace
browser not perform statistical calculations on the largest arrays. Use the
arrows to change the value of the maximum array size for which you want

5-11

5 Workspace, Search Path, and File Operations

the Workspace browser to perform statistical calculations. The default value
is 500,000 elements. Any variable exceeding that size reports <Too many
elements> instead of statistical results.

Handling NaN Values in Calculations
If your data includes NaNs, you can specify that the statistical calculations
consider the NaNs or ignore the NaNs. For example, if a variable includes
a NaN and the preference is set to Use NaNs when calculating statistics,
the values for Min, Max, Var and some others will appear as NaN, although
Mode, for example, shows a numeric result. With the preference set to Ignore
NaNs whenever possible, numeric results appear for most of the statistical
columns including Min and Max; Var, however, is still reported as NaN.

For more information about statistical values in the Workspace browser, see
“Viewing and Editing Values in the Current Workspace” on page 5-4.

5-12

Viewing and Editing Workspace Variables with the Variable Editor

Viewing and Editing Workspace Variables with the
Variable Editor

In this section...

“About the Variable Editor” on page 5-13

“Opening the Variable Editor” on page 5-13

“Viewing and Editing Cell Arrays, Structures, Objects, and
Multidimensional Arrays in the Variable Editor” on page 5-15

“Navigating and Editing Shortcut Keys for the Variable Editor” on page 5-23

“Changing Size, Content, and Format of Variables in the Variable Editor”
on page 5-24

“Cut, Copy, Paste, and Clear Contents in the Variable Editor” on page 5-25

“Insert and Delete in the Variable Editor” on page 5-30

“Undo and Redo in the Variable Editor” on page 5-30

“Exchanging Data with the Command Window” on page 5-30

“Exchanging Data with the Microsoft® Excel® Application” on page 5-30

“Creating Graphs and Variables, and Data Brushing in the Variable Editor”
on page 5-30

“Preferences for the Variable Editor” on page 5-31

About the Variable Editor
Use the Variable Editor to view and edit a visual representation of one
or two-dimensional arrays, cell arrays, structures, and objects and their
properties. You can also view the contents of multidimensional arrays.

Opening the Variable Editor
To open the Variable Editor from the Workspace browser, perform these steps:

1 In the Workspace browser, select the variable you want to open. Use
Shift+click or Ctrl+click to select multiple variables, or use Ctrl+A to
select all variables to open.

5-13

5 Workspace, Search Path, and File Operations

2 Click the Open Selection button on the toolbar. For one variable, you
can also open it by double-clicking it.

The Variable Editor opens, displaying the values for the selected variable.
The class and size of the value appear below the toolbar, and for some
classes, include a link to the help for that class.

(
	�)�����
�����
�����������	��	��
!�
���

$	"�������
���
�������!�	�%
��

$�
��������%����!	�����!�	�%
�������������!�
�����	��������	�%
��#�	���

Repeat the steps to open additional variables in the Variable Editor. Access
each variable via its tab at the bottom of the window, or use the Window
menu.

Changes you make to variables via the Command Window or other operations
automatically update the information for those variables in the Variable
Editor.

Note The maximum number of elements in a variable that you can open in
the Variable Editor is not limited by the MATLAB® software, but is based on
your operating system or the amount of physical memory installed on your
system.

5-14

Viewing and Editing Workspace Variables with the Variable Editor

Function Alternatives
To open a variable in the Variable Editor, use openvar with the name of the
variable you want to open as the argument. For example, type

openvar('A')

MATLAB opens A in the Variable Editor.

To see the contents of a variable in the workspace, just type the variable name
at the Command Window prompt. For example, type

A

and MATLAB returns

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Viewing and Editing Cell Arrays, Structures, Objects,
and Multidimensional Arrays in the Variable Editor

• “Cell Arrays — Viewing and Editing in the Variable Editor” on page 5-15

• “Structures — Viewing and Editing in the Variable Editor” on page 5-17

• “Objects and Their Properties — Viewing and Editing in the Variable
Editor” on page 5-19

• “Multidimensional Arrays — Viewing in the Variable Editor” on page 5-22

Cell Arrays — Viewing and Editing in the Variable Editor
You can view and edit the content of cell arrays in the Variable Editor. In the
Variable Editor, double-click an element of a cell array to open it as its own
Variable Editor document. You can then view and edit the contents of that
element. The following illustrations show an 1-by-3 cell array, C, and the
contents of C{1,1}. When viewing an element in a cell array, for example,
C{1,1}, use the Up button to go to its cell array, for this example, C.

5-15

5 Workspace, Search Path, and File Operations

5-16

Viewing and Editing Workspace Variables with the Variable Editor

Structures — Viewing and Editing in the Variable Editor
You can view and edit the content of structures in the Variable Editor. In
the Variable Editor, double-click an element of a structure to open it as its
own Variable Editor document. The following illustrations show a 1-by-3
structure, S and the result of double-clicking S(1,2), which displays the
contents in its own new document.

5-17

5 Workspace, Search Path, and File Operations

The information shown for the element of the structure is similar to that
shown in the Workspace browser: Field, Value, Size and other information.
Right-click a column header to show or hide columns. Click a column header
to sort by that column, and click again to reverse the sort order. When viewing
an element in a structure, for example, S(1,2), use the Up button to view
the structure, for this example, S. This can help you navigate in the Variable
Editor when there are many variables open.

To edit the value for an element, you can click the value and make changes.
Or double click the value; a new Variable Editor document opens where you
can click and then make the changes. The following illustration shows the
result of double-clicking the grade field for S(1,2), where you can change its
value. You can use the Up button go up from the field to view the element. For
example, when viewing S(1,2).grade, click the Up button to view S(1,2).

5-18

Viewing and Editing Workspace Variables with the Variable Editor

Objects and Their Properties — Viewing and Editing in the
Variable Editor

• “Viewing Object Properties in the Variable Editor” on page 5-19

• “Editing Property Values in the Variable Editor” on page 5-21

• “Getting Help for Objects and Properties from the Variable Editor” on page
5-22

Viewing Object Properties in the Variable Editor. In the Variable Editor,
you can view and edit properties of objects created with MATLAB Version 7.6
(R2008a) or higher. When you open an object in the Variable Editor, it displays
Property, Value, Size, and other information. Right-click a column header
to show or hide columns. Click a column header to sort by that column, and
click again to reverse the sort order. The following illustration shows the td
object in the Variable Editor.

5-19

5 Workspace, Search Path, and File Operations

Alternatively, double-click the value, which displays the value in its own
document where you can more easily view and edit it. The following
illustration shows the td.Material property value opened in its own
document. When viewing a property, use the Up button to view the object,
for this example, td. This can help you navigate in the Variable Editor when
there are many variables open.

5-20

Viewing and Editing Workspace Variables with the Variable Editor

Additional icons, images of locks, denote protected and private
properties of an object, indicating you cannot edit the values. The following
illustration shows an MException object, ME, with the private properties
identifier and message.

�����������������
���	���������������
�����	�������	!��������
������������������
��	�����	�!�
����

Editing Property Values in the Variable Editor. To edit a property’s value,
click the value field and make changes, as shown in the following illustration.

5-21

5 Workspace, Search Path, and File Operations

Getting Help for Objects and Properties from the Variable Editor.
For most classes supplied by The MathWorks™, when you click the link to
the class name, for example, char, the reference page help appears in the
Help browser. For user-created classes and for any other classes without a
reference page, M-file help displays in the Help browser, if available.

Multidimensional Arrays — Viewing in the Variable Editor
You can view the contents of multidimensional arrays in the Variable Editor.
When you open a multidimensional array in the Variable Editor, it does not
have usual grid structure, because multidimensional arrays do not fit that
format. You cannot double-click an element in a multidimensional array to
edit it. The following illustration shows R = rand(3,4,5) opened in the
Variable Editor.

5-22

Viewing and Editing Workspace Variables with the Variable Editor

Navigating and Editing Shortcut Keys for the
Variable Editor
Use the following shortcut keys (sometimes called hot keys) to move among
elements in the Variable Editor. Navigating in the Variable Editor is much
like navigating in the Microsoft® Excel® application.

5-23

5 Workspace, Search Path, and File Operations

Key Result

Enter Commit any changes to the element and move
to next element, where next element is specified
using “Preferences for the Variable Editor” on
page 5-31 (default is down)

Tab Move right

Within a selection, also moves from the last
column to the first column in the next row

Shift+Enter or
Shift+Tab

Move in opposite direction of Enter or Tab

Page Up Move up m rows, where m is the number of visible
rows

Page Down Move down m rows, where m is the number of
visible rows

Home Move to column 1

Ctrl+Home Move to row 1, column 1

Shift+Home Select to column 1

End Move to last column in current row

F2 (Ctrl+U on Apple®

Macintosh® platforms)
Edit current element, positioning cursor at the
end of the element

Changing Size, Content, and Format of Variables in
the Variable Editor
To increase the size of an array, scroll to the desired element in the variable
and enter a value. The array automatically expands to accommodate the
new value. Empty elements fill with zeros if numeric, or empty arrays if a
cell array. To decrease the size of an array, select the rows or columns that
you want to remove by clicking in the row or column header, which selects
the entire row, and then right-click, and select Delete from the context menu.
Similarly, you can make changes to arrays in structure and objects.

To change the value of an element in the Variable Editor, click the element
and type a new value. Press Enter, or click another element to make the

5-24

Viewing and Editing Workspace Variables with the Variable Editor

change take effect. You can specify where the cursor moves to after you press
Enter — see “Preferences for the Variable Editor” on page 5-31.

If you want to change the display format for the Variable Editor, select the
View menu and choose a format. To change the default format for future
use, use the Preferences dialog. For more information, see “Preferences for
the Variable Editor” on page 5-31.

If you opened an existing MAT-file and made changes to it using the
Variable Editor, save that MAT-file if you want the changes to be saved. For
instructions, see “Saving the Current Workspace” on page 5-5.

Cut, Copy, Paste, and Clear Contents in the Variable
Editor
You can cut or copy selected elements, rows, and columns in an array and
paste them to another position in that or another open array. To select a
column or row, click the row or column header (the element that shows the
row or column number). Use Shift+click to choose contiguous elements, rows,
or columns in the array, or Ctrl+A to select all elements. For the cut, copy,
and paste operations, use the Edit menu, the context menu, or the toolbar
buttons. You can undo the last operation you performed in the Variable Editor.

When you cut elements, the value of each element you cut becomes 0 if
numeric or [] if a cell array. After cutting, select the elements whose value
you want to replace with the cut elements and then choose Edit > Paste. If
the shape of the elements you cut differs from the shape of the elements into
which you are pasting, the Variable Editor pastes all the elements, either by
expanding the selection to be pasted into, or by expanding the array size to
allow all the elements to be pasted. Pasting copied elements is the same as
pasting cut elements, but the elements copied maintain their value rather
than becoming 0 or [].

To make the value of elements 0, select elements, rows, or columns and then
select Edit > Clear Contents. This differs from a performing a Cut because
the data from the selected elements does not move to the clipboard; any
clipboard content is unaffected by Clear Contents.

5-25

5 Workspace, Search Path, and File Operations

Example Copying and Pasting Array Elements
In this example, two elements are copied. The selected area for pasting is only
one element, but two elements are replaced.

5-26

Viewing and Editing Workspace Variables with the Variable Editor

5-27

5 Workspace, Search Path, and File Operations

Example Cutting and Pasting Array Elements
In this example, two rows are selected for cutting. One row is selected for
pasting. The Variable Editor expands the array size, adding a row, so all cut
elements can be pasted. The value of the cut elements cut becomes 0.

5-28

Viewing and Editing Workspace Variables with the Variable Editor

5-29

5 Workspace, Search Path, and File Operations

Insert and Delete in the Variable Editor
You can insert and delete elements, rows, and columns in arrays in the
Variable Editor. When you select Edit > Insert, or Edit > Delete, a dialog
box appears in which you specify rows, columns, or elements; for elements,
the Variable Editor prompts you to provide, the direction for shifting existing
elements.

Undo and Redo in the Variable Editor
You can undo the last action you performed in the Variable Editor, or redo a
change after choosing undo. Select Edit > Undo or Edit > Redo. The actions
supported are a change to a value you make by editing it in the Variable
Editor, cutting, pasting, inserting, deleting, clearing contents, and pasting
data from the Microsoft Excel application.

Exchanging Data with the Command Window
You can copy data from an array in the Variable Editor and paste it into the
Command Window. You can also copy a value from the Command Window
and paste it into an element in the Variable Editor. Be sure the data types are
compatible. For example, you cannot paste text from the Command Window
into a numeric array in the Variable Editor.

Exchanging Data with the Microsoft® Excel®

Application
You can cut or copy cells from the Excel® application and paste them into the
Variable Editor—use Edit > Paste from Excel. You can also cut or copy
elements from an array in the Variable Editor and paste them into the Excel
application.

Be sure the data types are compatible. For example, you cannot paste text
from the Excel application into a numeric array in the Variable Editor.

Creating Graphs and Variables, and Data Brushing
in the Variable Editor
You can create graphs from selected variables in the Variable Editor. To create
a graph, select an element, row, or column in an array, and in the right-click

5-30

Viewing and Editing Workspace Variables with the Variable Editor

context menu, choose the graph type. MATLAB presents allowable options
for the selected data. In some cases, MATLAB makes assumptions, such as
using cell2mat to convert selected cell array data, which cannot be plotted
directly. For more information, see “Plotting Process” in the MATLAB Getting
Started Guide.

To create a new variable, select an element, row, or column in an array in
the Variable Editor, right-click, and from the context menu, select Create
Variable from Selection.

Use the data brush feature, accessible via its toolbar button, to mark
observations on graphs, allowing you to remove or save them to new variables.
For more information, see “Data Brushing with the Variable Editor” in the
Data Analysis documentation.

Preferences for the Variable Editor
To set preferences for the Variable Editor, select File > Preferences. The
Preferences dialog box opens showing Variable Editor Preferences.

Format
Specify the default array output format of numeric values displayed in the
Variable Editor. This affects only how numbers are displayed, not how
MATLAB computes or saves them. For more information, see the reference
page for format.

Editing
You can specify where the cursor moves to after you type an element and
press Enter:

• If you want the cursor to remain at the element where you just typed, clear
the Move selection after Enter check box.

• If you want the cursor to move to another element, select the Move
selection after Enter check box, and then use Direction to specify how
you want the cursor to move. For example, if you want the cursor to move
right one element after you press Enter, select Right.

5-31

5 Workspace, Search Path, and File Operations

International Number Handling
You can specify how you want decimal numbers to be formatted when you cut
or copy elements from the Variable Editor and paste them into text files or
other applications. The Decimal separator to use when copying edit field
is by default "." (period). If you are working in or providing data to a locale
that uses a different character to delimit decimals, type that character in this
preference and click OK or Apply.

5-32

Search Path

Search Path

In this section...

“About the Search Path” on page 5-33

“How MATLAB® Software Determines Which File to Run” on page 5-34

“How MATLAB® Software Finds the Search Path, pathdef.m” on page 5-35

“Viewing and Setting the Search Path” on page 5-35

“Using the Path in Future Sessions” on page 5-41

“Recovering from Problems with the Search Path” on page 5-43

About the Search Path
The MATLAB® software uses a search path to find M-files and other files
related to MATLAB, which are organized in directories on your file system.
By default, the files supplied with MATLAB and MathWorks™ products
are included in directories that are on the search path. This default search
path includes many of the directories under matlabroot/toolbox, where
matlabroot is the directory where MATLAB is installed, which you can
determine by running the matlabroot function. By default, the top of the
search path includes a user portion, userpath, whose default value varies by
platform; for more information see the userpath reference page.

If you try to run or debug a file that is not in the current directory or not
in a directory on the search path, the action fails. When this occurs in the
Command Window, MATLAB errors. In the Editor/Debugger, a dialog box
prompts you to

• Change Directory — Makes the directory containing the file you want to
run become the current directory

• Add to Path — Adds the directory containing the file you want to run to
the top of the search path

When there are two files with the same name, one in the current directory and
the other in a directory on the search path, or both in directories on the search
path, MATLAB follows rules to determine which to run—for more information,
see “How MATLAB® Software Determines Which File to Run” on page 5-34.

5-33

5 Workspace, Search Path, and File Operations

The search path is also referred to as the path. Directories included are
considered to be on the path. When you include a directory in the search path,
you add it to the path. Subdirectories must be explicitly added to the path;
a subdirectory is not on the path just because its parent directory is on the
path. Adding directories to the path is similar to performing an include or
import in some other applications.

For instructions to view the search path and add directories to it, see “Viewing
and Setting the Search Path” on page 5-35, including “Caution Against Saving
Files in matlabroot/toolbox” on page 5-41.

How MATLAB® Software Determines Which File to Run
When there are two files with the same name, one in the current directory
and the other in a directory on the search path, MATLAB runs the one in
the current directory.

When there are two or more files with the same name, each located in a
different directory on the search path, MATLAB runs the file located in the
directory closest to the top of the search path, and MATLAB considers the
other file to be shadowed. For this reason, the order of the directories on
the search path is relevant.

In addition to files on the search path or in the current directory, other
constructs in MATLAB might have the same name as an M-file. For example,
if there is a variable named foo, and there is a function named foo is in a
directory on the search path, when you type foo in the Command Window,
MATLAB interprets foo as the variable rather than the M-file.

These situations are sometimes referred to as namespace conflicts or name
clashes and can be the source of unexpected results or errors. There are
other potential name conflicts such as with subfunctions and MEX-files—for
more information, see “Precedence Rules” in MATLAB Programming Tips
documentation.

Here are some guidelines for dealing with name clashes so that MATLAB
runs the file you want it to run:

• Change the current directory in MATLAB to the directory containing the
file you want MATLAB to run.

5-34

Search Path

• To use a shadowed function, that is, a function with the same name as
one that is located in a directory further up on the search path, move the
directory containing the shadowed function to the top of the search path, or
anywhere ahead of the other function with the same name. Alternatively,
remove from the search path the directory containing the function you
do not want to run.

• For M-file scripts, you can use run with the full pathname for the M-file. For
example, use run d:/mymfiles/foo.m to ensure that version of foo runs.

• If you are not sure of the function MATLAB is using, run which for a
specified function and MATLAB returns the full path to the function it
is using.

How MATLAB® Software Finds the Search Path,
pathdef.m
The search path is stored in the file pathdef.m, which by default, is located
in matlabroot/toolbox/local. You can store it in a different location, for
example, the startup directory for MATLAB.

When MATLAB starts, it looks for a pathdef.m file in its startup directory. If
none is found, it uses pathdef.m in matlabroot/toolbox/local. MATLAB
modifies the path based on any path statements in a startup.m file. During
a session, you can save changes to the path using the Set Path dialog box
or the savepath function, and MATLAB uses the path you saved to for the
remainder of the session.

If MATLAB finds a pathdef.m in the current directory, it uses that version.
To avoid problems, do not maintain a pathdef.m file in a directory other than
the startup directory for MATLAB or matlabroot/toolbox/local.

See also “Saving Settings to the Path” on page 5-40.

Viewing and Setting the Search Path
Use the Set Path dialog box to view and change the search path. For each
feature of the Set Path dialog box, you can use functions as an alternative.

To access the dialog box, select File > Set Path, or type pathtool in the
Command Window and press Enter. The Set Path dialog box opens.

5-35

5 Workspace, Search Path, and File Operations

�	�������	����	���������
�����������

��)������ ���������
�����������

$�!������ ��
�������	���
����������	���

+������� ���	�������
����	����%���������
��!���������	���
����������	���

(��� ����������������	��
���
��
���	����	���	����

����	��
������������
�������������

+������	�����������������
����	�	���%��������	�������	���

Use the Set Path dialog box for the following actions. Equivalent functions
are listed as well:

• “Viewing the Search Path” on page 5-37

• “Adding Directories to the Search Path” on page 5-37

• “Moving Directories Within the Search Path” on page 5-39

5-36

Search Path

• “Removing Directories from the Search Path” on page 5-39

• “Restoring the Default Search Path” on page 5-40

• “Reverting to the Previous Path” on page 5-40

• “Saving Settings to the Path” on page 5-40

See also

• “About the Search Path” on page 5-33

• “Using the Path in Future Sessions” on page 5-41

• “Recovering from Problems with the Search Path” on page 5-43

Viewing the Search Path
The MATLAB search path field in the Set Path dialog box lists all of the
directories on the search path. The top of the list is the start of the search
path, while the bottom of the list is the end.

Any file you want to run or debug in MATLAB must reside in a directory
that is on the search path, or in the current directory. If you create any files
MATLAB processes, add the directories containing the files to the search path
in MATLAB. You cannot add a file to the path, but rather you add the directory
containing the file; all files in that directory are then on the search path.

By default, the top of the search path includes a user portion, whose default
value, called the userpath, varies by platform. The userpath directory is
automatically added to the search path upon startup. For more information,
see the userpath reference page, and “Changing the Startup Directory Via
the userpath Function” on page 1-14.

Function Alternative. Use the path function to view the search path.

Adding Directories to the Search Path
Add directories to the search path when you want to run M-files in those
directories.

To add directories to the search path using the Set Path dialog box,

5-37

5 Workspace, Search Path, and File Operations

1 Click Add Folder or Add with Subfolders.

• If you want to add only the selected directory but do not want to add all
of its subdirectories, click Add Folder.

• If you want to add the selected directory and all of its subdirectories,
click Add with Subfolders.

The Browse for Folder dialog box opens.

2 In the Browse for Folder dialog box, use the view of your file system to
select the directory to add, and then click OK.

The selected directory, and subdirectories if specified in step 1, are added to
the top of the search path.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-40.

4 Click Close. If you did not save the changes in the previous step, the
directories you added remain on the search path until you end the current
session of MATLAB.

You cannot add method directories (directories that start with @) and private
directories to the search path.

Adding Directories to the Path from the Current Directory Browser.
In the Current Directory browser, select a directory, right-click, and select
Add to Path from the context menu. Then select one of the submenus, for
example, Selected Folder and Subfolders.

Function Alternative. To add directories to the top or the end of the search
path, use addpath. The addpath function offers an option to get the path as a
string and to concatenate multiple strings to form a new path.

You can include addpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details, see “Modifying the Path in
a startup.m File” on page 5-42.

5-38

Search Path

Moving Directories Within the Search Path
The order of files on the search path is relevant — for more information, see
“How MATLAB® Software Determines Which File to Run” on page 5-34.

To modify the order of directories within the search path,

1 Select the directory or directories you want to move.

2 Click one of the Move buttons, such as Move to Top. The order of the
directories changes.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-40.

4 Click Close. If you did not save the changes in the previous step, the new
order of files on the search path remains in effect until you end the current
session of MATLAB.

If you move the userpath directory from the top of the path to another
position in the path and save the changes, upon the next startup, MATLAB
automatically moves the userpath directory to the top of the path.

Function Alternative. While there is not a specific function to move
directories, you can edit the pathdef.m file with any text editor to change the
order of the directories. Use caution when editing the file so that you do not
make MATLAB and toolbox functions unusable.

Removing Directories from the Search Path
To remove directories from the search path using the Set Path dialog box,

1 Select the directories to remove.

2 Click Remove. The directories are removed from the path.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-40.

5-39

5 Workspace, Search Path, and File Operations

4 Click Close. If you did not save the changes in the previous step, the
directories are removed from the search path until you end the current
session in MATLAB.

If you remove the userpath directory from the search path and save the
changes to the path, it also automatically clears the value for userpath,
meaning that directory is no longer the startup directory.

Function Alternative. To remove directories from the search path, use
rmpath.

You can include rmpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details see “Modifying the Path in
a startup.m File” on page 5-42.

Restoring the Default Search Path
To restore the default search path, click Default in the Set Path dialog box.
This changes the search path so that it includes only the directories installed
with MATLAB and related products.

To restore the default value for the user portion of the path, userpath, run
userpath('reset').

Reverting to the Previous Path
To restore the previous path, click Revert in the Set Path dialog box. This
cancels any unsaved changes you have made in the Set Path dialog box.

Saving Settings to the Path
When you make changes to the search path, they remain in effect during the
current session in MATLAB. To keep the changes in effect for subsequent
sessions, you need to save them. To save changes using the Set Path dialog
box, click Save.

If you want to automatically use this search path in future sessions,
save the path to your startup directory, which saves pathdef.m to that
location. You can save the changes to the default pathdef.m file, in
matlabroot/toolbox/local if you have write permission for that directory
but see the following caution. Alternatively, you can include addpath and

5-40

Search Path

rmpath statements in a startup.m file, which avoids some problems you
might have with saving the path, for example, using the same path with
both Microsoft® Windows® and The Open GroupUNIX® platforms. For more
information, see “Using the Path in Future Sessions” on page 5-41.

Note When MATLAB starts up, it may provide in the Command Window a
list of invalid directories. These directories were previously in pathdef.m but
were subsequently deleted. The directories do not now appear on the search
path listing in the Set Path dialog box. Click Save to overwrite the pathdef
M-file, thereby eliminating future reporting of these nonexistent directories.

Caution Against Saving Files in matlabroot/toolbox. Save any M-files
you create and any M-files supplied with products from The MathWorks
that you edit in a directory that is not in the matlabroot/toolbox directory
tree. If you keep your files in matlabroot/toolbox directories, they can
be overwritten when you install a new version of MATLAB. Also note that
locations of files in the matlabroot/toolbox directory tree are loaded and
cached in memory at the beginning of each session of MATLAB to improve
performance. If you save files to matlabroot/toolbox directories using an
external editor or add or remove in from these directories using file system
operations, run rehash toolbox before you use the files in the current session.
If you make changes to existing files in matlabroot/toolbox directories using
an external editor, run clear functionname before you use the files in the
current session. For more information, see rehash or “Toolbox Path Caching
in the MATLAB® Program” on page 1-25.

Function Alternative. Use savepath to save the current path to pathdef.m.
Locate pathdef.m in your startup directory for MATLAB to automatically
use it in future sessions. Consider using savepath in your finish.m file. To
modify the default path upon startup, include addpath and rmpath functions
in your startup.m file. For more information, see “Modifying the Path in a
startup.m File” on page 5-42.

Using the Path in Future Sessions
There are three basic ways for MATLAB to automatically use a search path
you specify, each with advantages and disadvantages:

5-41

5 Workspace, Search Path, and File Operations

• “Modifying the Path in a startup.m File” on page 5-42

• “Saving the Path in the Startup Directory” on page 5-42

• “Saving the Path in matlabroot/toolbox/local” on page 5-43

For background information, see “How MATLAB® Software Finds the Search
Path, pathdef.m” on page 5-35.

Modifying the Path in a startup.m File
Put addpath and rmpath statements in a startup.m file, and include the
startup file in the startup directory for MATLAB. When MATLAB starts, it
uses the search path defined in pathdef.m in matlabroot/toolbox/local
and modifies it based on the commands in the startup.m file.

By maintaining an unaltered pathdef.m in matlabroot/toolbox/local,
you avoid inadvertently removing directories provided by The MathWorks
from the path. This method continues working even when you update to a
new version of MATLAB. If you run MATLAB on both Windows and UNIX
platforms, this method works well — for example, for each platform, include
separate addpath sections in the startup.m file, with each section preceded
by an ispc or isunix statement.

One disadvantage of this method is that changes you make to the path using
the Set Path dialog box are not incorporated in the startup.m file.

Saving the Path in the Startup Directory
Copy pathdef.m from matlabroot/toolbox/local to the startup directory
for MATLAB. Make changes to the path using the Set Path dialog
box, and with addpath and rmpath functions — choose whichever suits
your needs. You can use this method if you do not have write access to
matlabroot/toolbox/local.

There are some disadvantages to this method. You might inadvertently
remove directories supplied by The MathWorks from the path. When you
update to a new version of MATLAB, you cannot use the pathdef.m file in
the startup directory, but must delete it and create a new version. If you
run MATLAB on both Windows and UNIX platforms, you need to maintain
a separate pathdef.m file for each.

5-42

Search Path

Saving the Path in matlabroot/toolbox/local
If you have write access to matlabroot/toolbox/local, make and save
changes to the path using the Set Path dialog box, and with addpath and
rmpath functions — choose whichever suits your needs.

There are some disadvantages to this method. You cannot maintain this file
when you update to a new version of MATLAB, but will need to use the new
default pathdef.m and make changes to it. If you run MATLAB on both
Windows and UNIX platforms, you need to maintain a separate pathdef.m
file for each.

Recovering from Problems with the Search Path
If you get unexpected results that are related to the search path, you can try
to correct the path file or restore the default path. You might experience path
problems if you save the path on a Windows platform and then try to use the
same pathdef.m file on a UNIX platform. Similarly, you might experience
problems if you edit the pathdef.m file directly and make it invalid, or if the
file becomes corrupt, renamed, or lost.

For example, if an error message similar to the following appears when you
start MATLAB

Warning: MATLAB did not appear to successfully set the search
path...

it indicates a problem with the search path and you will not be able to use
MATLAB successfully.

To recover from problems with the search path, try the following, in order,
proceeding to the next step only if needed:

1 View the pathdef.m and startup.m files, looking for obvious problems.
Make changes and save them. If path problems appear to be resolved, start
MATLAB again to be sure the problem does not reappear. Depending on
the problem, you might not be able to even view the pathdef.m file.

2 Use the default path for products from The MathWorks. In the Set Path
dialog box, select Default, then Save, then Close. Depending on the
problem, you might not be able to even open the dialog box.

5-43

5 Workspace, Search Path, and File Operations

3 Run restoredefaultpath. This sets the search path to include only
installed products from The MathWorks. If that seems to have corrected
the problem, run savepath. Start MATLAB again to be sure the problem
does not reappear.

Depending on the problem, this might generate a message such as

The path may be bad. Please save your work (if desired), and quit.

If so, perform step 4.

4 Perform these steps after trying step 3.

a Run

restoredefaultpath; matlabrc

This might run for a few minutes. It sets the search path to include only
installed products from The MathWorks and corrects path problems
encountered during startup.

b If there is a pathdef.m in your startup directory for MATLAB, it caused
the problem. So either remove the bad pathdef.m file or replace the with
a good pathdef.m file, for example, one you can generate at this point
with

savepath('path_to_your_startup_directory/pathdef.m')

c Start MATLAB again to be sure the problem does not reappear.

5-44

File Management Operations

File Management Operations

In this section...

“About MATLAB® File Operations” on page 5-45

“Current Directory Field” on page 5-45

“Current Directory Browser” on page 5-46

“Viewing and Making Changes to Directories” on page 5-48

“Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-54

“Opening and Running Files” on page 5-58

“Finding Files and Content Within Files” on page 5-60

“Comparing Files and Directories” on page 5-65

“Accessing Source Control Features” on page 5-65

“Preferences for the Current Directory Browser” on page 5-65

Note Generally, you cannot perform operations on files and directories for
which you do not have proper permission. For example, you cannot copy a file
to a read-only directory using the Current Directory browser, however, you
can do so using movefile with the appropriate option.

About MATLAB® File Operations
MATLAB® file operations use the current directory and the MATLAB search
path as reference points. Any file you want to run must either be in the
current directory or on the search path. The key tools for performing file
operations are the current directory field and the Current Directory browser.

Current Directory Field
A quick way to view or change the current directory is by using the current
directory field in the desktop toolbar.

5-45

5 Workspace, Search Path, and File Operations

To change the current directory from this field, do one of the following:

• In the field, type the path for the new current directory.

• Click the down arrow, and then select an item from the list of previous
working directories. This makes that directory become the MATLAB
current working directory. The directories are listed in order, with the most
recently used at the top of the list. To clear the list or set the number of
directories saved in the list, see “Preferences for the Current Directory
Browser” on page 5-65.

• Click the Browse for Folder button to set a new current directory.

• Click the Go Up One Level button to move the current directory up
one level.

The current directory field in the desktop also appears in the Current
Directory browser, when the Current Directory browser is undocked. Consider
it to be one tool with two different means of accessing it.

Current Directory Browser
To search for, view, open, find, and make changes to directories and files
related to MATLAB, use the Current Directory browser. Most features of the
Current Directory browser have equivalent functions that perform similar
actions. If you have an active Internet connection, you can watch the Current
Directory Browser video demo for an overview of the major features.

In addition to the features described here, the Current Directory browser
includes tools to help you manage your M-files—see “Directory Reports in
Current Directory Browser” on page 7-2.

To open the Current Directory browser, select Desktop > Current Directory
from the MATLAB desktop, or type filebrowser at the Command Window
prompt. The Current Directory browser opens.

5-46

File Management Operations

Change the path in the edit box to
view a directory and its contents.

This field appears when the Current
Directory browser is undocked from
the desktop.

Click to choose
the type of
directory report.

When the Show M and MDL
file descriptions preference is
chosen, the first comment in
the selected M-file or Simulink
model displays here.

Click the Find Files button to
search for M-files and content
within M-files.

Double-click a file
to open it in an
appropriate tool.

When the Show M, MDL and MAT file contents preference is chosen, the
help portion, complete description, or list of variables in the selected M-file,
Simulink model, or MAT-file (respectively) displays here.

5-47

5 Workspace, Search Path, and File Operations

The main tasks you perform with the Current Directory browser are:

• “Viewing and Making Changes to Directories” on page 5-48

• “Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-54

• “Opening and Running Files” on page 5-58

• “Finding Files and Content Within Files” on page 5-60

• “Accessing Source Control Features” on page 5-65

• Setting “Preferences for the Current Directory Browser” on page 5-65

Viewing and Making Changes to Directories
You can change the current working directory, view its contents, add
directories to the MATLAB search path, and change the way the Current
Directory browser presents entries.

• “Changing the Current Working Directory and Viewing Its Contents” on
page 5-48

• “Searching the Current Directory Browser” on page 5-49

• “Changing the Display” on page 5-52

• “Adding Directories to the MATLAB® Search Path” on page 5-54

Changing the Current Working Directory and Viewing Its
Contents
To change the current directory, use the current directory field. The Current
Directory browser lists the files and directories in the current directory.

To view the contents of a subdirectory, double-click it, or select the
subdirectory and press Enter or Return.

To move up one level in the directory structure, click the Go Up One Level
button , or press the backspace (<-) key.

5-48

File Management Operations

You can specify the current directory for MATLAB upon startup, called the
startup directory—for more information, see “Startup Directory for the
MATLAB® Program” on page 1-11.

Function Alternative. To view the contents of the current working directory
or another specified directory, use dir. Use a return argument with dir to
get a structure containing the names of the files in the directory, their last
modified date and time, and so on.

Use what with no arguments to display files related to MATLAB that are in
the current working directory. Use which to display the path for a specified
function. Use exist to see if a directory or file exists. Use fileattrib to see
or set file attributes, much like attrib on DOS or chmod on UNIX® platforms.

Searching the Current Directory Browser
You can search the Current Directory browser for files and directories by
typing directly in the window. As you type, the Current Directory browser
searches downward from the top of the window to find an entry that matches
what you have typed. For example:

1 Set C:\Climate as your current directory.

2 Assume that you want to search the Current Directory for the file named
standard.m. Begin your search by positioning the cursor anywhere within
the Current Directory browser.

5-49

5 Workspace, Search Path, and File Operations

3 Type the letter s. The Current Directory browser searches to find the
first entry beginning with the letter s. In this example it stops at the
directory named standalone. Note as you begin typing that a small
yellow-background Search filenames for: dialog box appears at the
top of the Current Directory browser window. This dialog box keeps track
of your search target as you type additional letters to narrow the focus
of your search.

5-50

File Management Operations

4 Because the standalone directory is not your intended search target,
continue typing additional letters that identify your search target,
eventually entering the letters standar.

5 When you have entered the letters standar, the search resumes, stopping
this time at the standard.m file, your intended search target.

5-51

5 Workspace, Search Path, and File Operations

Changing the Display

Types of Files. To specify the types of files shown in the Current Directory
browser, use the View menu. For example, you can show only M-files. If All
Files is selected and you want to see specific file types, first clear the selection
for All Files and then select the specific file types.

Columns. To show or hide columns, use preferences for the Current Directory
browser. Select File > Preferences > Current Directory and select or clear
the check boxes for Browser display options. For more information, see
“Browser Display Options” on page 5-67.

You can sort the information shown in the Current Directory browser by
column. Click the title of the column on which you want to sort. The display is
sorted, with the information in that column shown in ascending order, and an
up arrow indicating the direction. Click a second time on the column title to
sort the information in descending order.

5-52

File Management Operations

Contents. In the Current Directory browser, select a file and then view
information about the file in the Current Directory browser’s lower pane. To
do this, you must first select File > Preferences > Current Directory and
under Browser display options, select the check box Show M, MDL and
MAT file contents.

For an M-file, it shows the M-file help. For a Simulink® model, it shows the
complete description, allowing you to view information about a model without
having to start the Simulink software. For a MAT-file, it displays the names
of its variables along with their size, bytes, and class, allowing you to view the
content of a MAT-file without loading it.

View variables
in selected
MAT-file without
loading the file.

You can view more extensive help for the M-file selected in the Current
Directory browser. From the context menu, select View Help. The reference
page for that function appears in the Help browser.

5-53

5 Workspace, Search Path, and File Operations

Adding Directories to the MATLAB® Search Path
From the Current Directory browser, you can add directories to the MATLAB
search path. Right-click and from the context menu, select Add to Path.
Then select one of these options:

• Current Directory — Adds the current directory to the path.

• Selected Folders — Adds the directories selected in the Current Directory
browser to the path.

• Selected Folder and Subfolders — Adds the directory selected in the
Current Directory browser to the path, and adds all of its subdirectories
to the path.

Creating, Renaming, Copying, and Removing
Directories and Files

• “General Notes” on page 5-54

• “Creating New M-Files” on page 5-55

• “Creating New Directories” on page 5-55

• “Renaming Files and Directories” on page 5-56

• “Cutting or Deleting Files and Directories” on page 5-56

• “Copying and Pasting Files and Directories” on page 5-57

General Notes
If you have write permission, you can create, copy, remove, and rename files
and directories related to MATLAB for the directory shown in the Current
Directory browser. If you do not have write permission, you can still copy files
and directories to another directory, or you can use equivalent functions,
such as movefile.

To run functions whose arguments require the use of a path name or file
name, use the function form rather than the unquoted or command form of
the syntax when the path name or file name includes spaces. For example,
the command form

delete my file.m

5-54

File Management Operations

generates a warning and does not delete my file.m. Instead use the function
form of the syntax:

delete('my file.m')

Creating New M-Files
To create a new file using the Current Directory browser:

1 Right-click, and then from the context menu, select New, and then select
one of the following:

• Blank M-File to create an empty M-file

• Function M-File to create an M-file prepopulated with a basic M-file
function structure

• Class M-File to create an M-file prepopulated with a basic M-file class
structure

A new M-file named Untitledn appears at the end of the list of files shown
in the Current Directory browser. An M-file icon, , displays next to the
new file.

2 Type over Untitledn with the name you want to give to the new M-file.

3 Press Enter or Return.

MATLAB creates the new M-file.

4 To enter or edit the contents of the new M-file, open it—see “Opening and
Running Files” on page 5-58.

Function Alternative. To create a new M-file or other type of text file in the
Editor, use the edit function.

Creating New Directories
To create a new directory using the Current Directory browser:

1 Click the New Folder button in the Current Directory browser toolbar, or
right-click and then select New > Folder from the context menu.

5-55

5 Workspace, Search Path, and File Operations

A folder icon, with the default name NewFoldern appears at the end of the
list of files shown in the Current Directory browser.

2 Type over NewFoldern with the name you want to give to the new directory.

3 Press the Enter or Return key.

The directory is added.

Function Alternative. To create a directory, use the mkdir function. For
example,

mkdir newdir

creates the directory newdir within the current directory.

Renaming Files and Directories
To rename a file or directory:

1 Select the item that you want to rename.

2 Right-click, and select Rename from the context menu.

3 Type over the existing name with the new name for the file or directory,
and press Enter or Return.

The file or directory is renamed.

Function Alternative. To rename a file or directory, use movefile. For
example,

movefile('myfile.m','projectresults.m')

renames myfile.m to projectresults.m.

Cutting or Deleting Files and Directories
To cut or delete files and directories:

1 Select the files and directories to remove. Use Shift+click or Ctrl+click to
select multiple items.

5-56

File Management Operations

2 Right-click and select Cut or Delete from the context menu.

The files and directories are removed.

Files and directories that you delete from the Current Directory browser go
to the Recycle Bin on Microsoft® Windows® platforms (or the Trash Can on
Macintosh® platforms). If you do not want the selected items to go to the
Recycle Bin, press Shift+Delete. A confirmation dialog box displays before
the items are deleted, assuming you have set that option in your operating
system. For example, on Windows platforms, right-click the Recycle Bin,
select Properties from the context menu, and then, under the Global tab,
select the check box to Display delete confirmation dialog.

Function Alternative. To delete a file, use the delete function. For example,

delete('d:/mymfiles/testfun.m')

deletes the file testfun.m. You can recover deleted files if you use the
recycle function or the equivalent preference described in “Default Behavior
of the Delete Function” on page 2-66.

To delete a directory and optionally its contents, use rmdir. For example,

rmdir('myfiles')

removes the directory myfiles from the current directory.

Copying and Pasting Files and Directories
Use the Current Directory browser, to copy (or cut) and paste files and
directories:

1 Select the files or directories to copy. Use Shift+click or Ctrl+click to select
multiple items. For a directory, the entire contents are copied, including
all subdirectories and files.

2 Right-click and select Copy from the context menu.

3 Navigate to the file or directory where you want to paste the items you
just copied.

5-57

5 Workspace, Search Path, and File Operations

4 Right-click and select Paste from the context menu.

You can also copy and paste files and directories to and from tools outside of
MATLAB, such as Windows Explorer. You can use Current Directory browser
menu items, or keyboard shortcuts, or you can drag the items.

Function Alternative. To cut and paste or to copy and paste files or
directories, use movefile or copyfile. For example, to make a copy of the file
myfun.m in the current directory, assigning it the name myfun2.m, type

copyfile('myfun.m','myfun2.m')

Opening and Running Files

• “Opening Files” on page 5-58

• “Running M-Files” on page 5-60

Opening Files
You can open a file from the Current Directory browser and the file opens in
the tool associated with that file type.

To open a file, select one or more files and perform one of the following actions:

• Press the Enter or Return key.

• Right-click and select Open from the context menu.

• Double-click the file(s).

The file opens in the appropriate tool, provided that the tool is installed
on your system. For example, the Editor opens for M-files, and Simulink
software opens for model (.mdl) files.

To open any file in the Editor, except P-files (.p), select Open as Text from
the context menu. You cannot open P-files.

To open a file using an external application, select Open Outside MATLAB
from the context menu. For example, if you right–click myfile.doc, and
select Open Outside MATLAB, then myfile.doc opens in Microsoft Word
(assuming you have the .doc file association configured to start Microsoft

5-58

File Management Operations

Word). This is useful for file types associated with MATLAB software that are
also associated with an external application on the Windows platform. For
example, .mat is the extension for MATLAB data files as well as Microsoft®

Access™ files. When you double-click a .mat file in the Current Directory
browser, it loads the MATLAB data file into the workspace. If instead you
want to open the .mat file in Microsoft Access, right-click it and select Open
Outside MATLAB from the context menu. MATLAB opens the file using
the application you associated with that file type on the Windows platform.
For more information, see “Changing File Associations for the MATLAB®

Program from the Windows® Environment” on page 1-6.

You can also import data from a file. Select the file, right-click, and select
Import Data from the context menu. The Import Wizard opens. See the
Import Wizard documentation for instructions on importing the data.

You can run a Windows shortcut directly from the Current Directory browser.
Double-click the shortcut icon in the Current Directory browser to perform
the Windows operation.

Function Alternative. Use the open function to open a file in the tool
appropriate for the file, given its file extension. Default behavior is provided
for standard MATLAB file types. You can add other file types and override
the default behavior for the standard files. For name.ext, open performs
the following actions.

File Type Extension Action

Figure file fig Opens figure name.fig in a figure
window.

HTML file html Opens HTML file name.html in the
MATLAB Web browser.

M-file m Opens M-file name.m in the Editor.

MAT-file mat Opens MAT-file name.mat in the Import
Wizard.

Model mdl Opens model name.mdl in the Simulink.

PDF file pdf Opens the PDF file name.pdf in the
installed PDF reader, for example,
Adobe® Acrobat®.

5-59

5 Workspace, Search Path, and File Operations

File Type Extension Action

Variable none Opens the numeric or string array
name in the Variable Editor; open calls
openvar.

Other custom Opens name.custom by calling the
helper function opencustom, where
opencustom is a user-defined function.

Use winopen to open a file using an external application on Windows
platforms.

To view the content of an ASCII file, such as an M-file, use the type function.
For example

type('startup')

displays the contents of the file startup.m in the Command Window.

Running M-Files
To run an M-file from the Current Directory browser, select it, right-click,
and select Run from the context menu. The results appear in the Command
Window.

Finding Files and Content Within Files
Use the Find Files tool to search for files or for specified text within files.

5-60

File Management Operations

Close current
tab pane.

Results of find.

Click a column heading
to change sort order.

Type filename or
text (or both) you
want to find.

Restrict file types.

Select directories
to search in.

Start the find
operation.

Option to specify
exact match.

To search for files in one or more directories, or to search for specified text in
files, follow these instructions:

1 Open the Find Files tool by clicking the Find Files button in the
Current Directory browser toolbar, or by selecting Edit > Find Files from
any desktop tool, such as the Current Directory browser or the Editor.

The Find Files dialog box opens.

2 Type the file name and/or text you are searching for:

• To search for files, type the file name in the Find files named field. You
can use the wildcard character (*) in the file name. For example, type
coll* to search for file names that start with coll.

5-61

5 Workspace, Search Path, and File Operations

• To search for text within files, type the text in the Find files containing
text field. For example, search for plot. Alternatively, you can select
text in the Command Window or Editor and that text appears in the
Find files containing text field.

Under More options, use the Search type to specify Matches whole
word, or specify a partial match by selecting Contains text.

• To search for text in specified file names only, type entries in both fields.
Use the Clear Text button to clear the entries in both fields.

Click the down arrow next to each field to select previous entries from the
current MATLAB session.

3 You can restrict the types of files to search by selecting an option in Include
only file type(s). For example, select *.m to limit the search to M-files only.

With All files (*) selected, use Skip file types (under More options) to
ignore files of the specified type. For details, see “Skip File Types in Find
Files” on page 5-63.

4 From the Look in list box, select the directories to search in. Select the
MATLAB current directory or MATLAB search path, or use the Browse
option to select another directory. You can instead type the full path
for one or more directories into this field, with each path separated by a
semicolon (;). To include subdirectories in the search, select the Include
subdirectories check box.

5 Use additional entries under More options to further restrict the search:

• Skip files over the specified size to ignore large files that might take
a long time to search through. This option is only available when you
are searching for text within files.

• Match case when lower or upper case is relevant.

6 To execute the search, click Find. While the search is in progress, the Find
button label changes to Stop Find. To abort a search, click Stop Find.

Search results appear in the pane on the right side of the Find Files dialog
box, with a summary of the results at the bottom of the pane. For text
searches, the line number and line of code are shown. To see the full path
names for the files, select the Show full pathnames check box.

5-62

File Management Operations

7 Click a column heading to sort the results based on that column. Click
the column heading again to reverse the sort order for that column. For
example, click Line to sort results by line number.

Opening Files from Find Files
To open files shown in the results list, do one of the following:

• Double-click the file

• Select the files and press Enter or Return

• Right-click selected files and then choose Open from the context menu

The files open in the Editor. For text searches, the file opens scrolled to the
line number shown in the results section of the Find Files dialog box. Once
in the Editor, you can use the Find & Replace tool to change specified text.

Previous Results of Find Files
To see the results of a previous search, select its tab at the bottom of the
results pane. Find Files shows up 10 search result tabs while the tool is
open, but does not maintain the results after you close the tool.

MATLAB software maintains the state for options in the Find Files tool even
after you end the session.

Skip File Types in Find Files
In the Find Files tool, you can restrict the search to look in all file types
except those you specify:

1 For Include only file type(s), select All files (*).

2 Select the Skip file type(s) check box.

3 Click Edit to view or change the list of file types the search ignores.

The Edit Skipped File Extensions dialog box opens.

5-63

5 Workspace, Search Path, and File Operations

To skip a file type not shown in this list,
enter the extension and click Add. The
extension then appears in the list.

Be sure its State is selected.

If you do not want a file
type to appear in this list,
select the name of the
extension and click Remove.

When Skip file type(s)
in the Find Files tool is
selected, the search
ignores file types in this
list whose State is selected.

For the example shown,
the search would ignore
P-files because State
is selected, but would look
in TAR files because State
is cleared.

4 Find Files will not look in any file type in the list whose State check box is
selected. It will look in any file type in the list whose State check box is
cleared.

5-64

File Management Operations

a Clear or select the State check box as needed to instruct Find Files
about file types to skip.

b If you want Find Files to skip a file type not shown in the list, enter the
file extension in the field at the top of the dialog box and click Add. The
type appears in the list. Be sure its State check box is selected. For the
example shown, the scc file type was added.

c You can reduce the size of the list by removing any file extensions. Select
the name of the extension and click Remove.

5 Click OK to accept the changes and close the Edit Skipped File
Extensions dialog box.

6 When you click Find in the Find Files tool, the search ignores the selected
file types.

Function Alternative
Use lookfor to search for the specified text in the first line of help for all
M-files on the search path.

Comparing Files and Directories
The MATLAB File and Directory Comparisons tool determines and displays
the differences between two files or two directories.

For information on using the tool, its results, and other options, see
“Comparing Files and Directories” on page 6-57.

Accessing Source Control Features
Select a file or files in the Current Directory browser and right-click to view
the context menu. From there you can access features for source control. For
details on these features, see Chapter 10, “Source Control Interface”.

Preferences for the Current Directory Browser
Using preferences, you can specify the number of recently used current
directories to maintain in the history list as well as the type of information to
display in the Current Directory browser.

5-65

5 Workspace, Search Path, and File Operations

From the Current Directory browser, select File > Preferences. The
Current Directory Preferences pane appears in the Preferences dialog box.

5-66

File Management Operations

History
The drop-down list in the current directory field shows the history of current
directories, that is, the most recently used current directories.

Saving Directories. When the MATLAB session ends, the list of directories
will be maintained. Use the Save most recent directories field to specify
how many directories will appear on the list at the start of the next MATLAB
session.

Removing Directories. To remove all entries in the list, click Clear
History. The list is cleared immediately.

Browser Display Options
In the Current Directory browser, you can view or hide the following
information by selecting the appropriate Browser display options:

• File type

• File size

• Last modified date

• M-file descriptions (the first comment line in the M-file, also called the
H1 line) and the start of MDL file descriptions (approximately the first
128 characters)

• M-file help, MDL complete descriptions, and MAT-file contents

For more information, see “Changing the Display” on page 5-52.

Auto-Refresh
By default, the Auto-refresh directory view check box is selected, with
an update time of 2 seconds. This means that every 2 seconds, the Current
Directory browser checks for and reflects any changes you made to files and
directories in the current directory using other applications.

In some cases when the current directory is on a network, MATLAB becomes
slow because of the auto-refresh feature in the Current Directory browser. If
you experience general slowness in MATLAB and have the Current Directory
browser open, try increasing the default update time to alleviate this problem.

5-67

5 Workspace, Search Path, and File Operations

For extremely slow performance situations, clear the check box to turn
auto-refresh off. You can then right-click and select Refresh from the context
menu to update the Current Directory browser display.

5-68

6

Editing and Debugging
M-Files

MATLAB® software provides powerful tools for creating, editing, and
debugging files, as detailed here. For information about the MATLAB
language and writing M-files, see the Programming Fundamentals
documentation.

Begin with Existing Code (p. 6-3) Use code resources such as your
Command Window and History,
and existing M-files, demos, and
examples.

Ways to Edit, Evaluate, and Debug
M-Files (p. 6-5)

Use the MATLAB Editor for M-files
or any text file. Or use another editor
you have, along with debugging
functions in the Command Window.

Starting, Customizing, and Closing
the Editor (p. 6-7)

Create and open files, arrange
document windows, and set
preferences.

Entering Statements in the Editor
(p. 6-15)

Changing case, undo and redo,
comments, tab completion. Also use
features common to the Command
Window for entering statements.

Appearance of an M-File — Making
Files More Readable (p. 6-28)

Syntax highlighting, indenting, line
and column numbers, highlighting,
and more.

6 Editing and Debugging M-Files

Navigating in an M-File (p. 6-44) Go to a line number, function,
bookmark, back and forward, and
open a selection.

Finding Text in Files (p. 6-51) Find and replace text in the current
file or multiple files. Incremental
search tool.

Comparing Files and Directories
(p. 6-57)

View differences between two files
or two directories.

Keyboard Shortcuts in the Editor
(p. 6-70)

Use the keyboard to navigate in or
perform other common actions in a
file.

Saving, Printing, and Closing Files
in the Editor (p. 6-73)

Save and autosave features, printing
and page setup, and closing files.

Running M-Files in the Editor
(p. 6-77)

Running M-files from the Editor,
with no input arguments or with
input arguments

Finding Errors, Debugging, and
Correcting M-Files (p. 6-97)

Automatically analyze code using
M-Lint to find errors and make
improvements, and use debugging
features to isolate run-time
problems.

M-Lint Code Analyzer (p. 6-100) Check your code for problems and
get recommendations to maximize
performance and maintainability.

Debugging Process and Features
(p. 6-117)

Graphical debugging tools and
functions for debugging in the
Command Window.

Using Cells for Rapid Code Iteration
and Publishing Results (p. 6-147)

Define sections of your M-files as
cells. Use cells for publishing M-files
to formats like HTML. Also use cells
to experiment and incrementally
modify values in M-files.

6-2

Begin with Existing Code

Begin with Existing Code

In this section...

“Create M-Files from Command Window and History” on page 6-3

“Use Existing M-Files and Examples” on page 6-3

Create M-Files from Command Window and History
Before you begin writing MATLAB® code in a blank file, consider starting
with existing resources for the code, and then use the MATLAB Editor to
modify the code.

In many cases, you create and run MATLAB statements in the Command
Window, modify those statements to your satisfaction, and then create
an M-file that includes the statements. To facilitate this process, in the
Command History, select the MATLAB statements you want to include in the
M-file. Right-click and select Create M-File. The Editor opens a new file
that includes the statements you selected from the Command History. You
can also copy the statements from the Command History and paste them
into an existing M-file.

Use Existing M-Files and Examples
If you can find existing M-files that accomplish what you want to do, copy and
use the code in your own M-file, assuming you have legal permission to do so.
Following are some resources you can use.

MATLAB® and Toolbox Functions
You can access and reuse the code in most MATLAB and toolbox functions
that have a .m file extension. You cannot use MATLAB and toolbox functions
that are built-in. They are efficient but their code is not accessible.

If there is a MATLAB function that is similar to what you need to do and it is
not built-in, open the file in the Editor and use it as a basis for your file. Be
sure to save the file using a different name and in a directory that is not in
matlabroot/toolbox. See “Saving Files” on page 6-73 for details.

6-3

6 Editing and Debugging M-Files

Demos and Examples
The MATLAB product and its toolboxes include demonstration programs. You
can view the code in the demos and copy it for use in your own M-files. To see
the demos, type demo, which opens the Help browser to the Demos pane. For
more information about demos, see “Demos in the Help Browser” on page 4-31.

There are also code examples in the online documentation. To see a list of
examples for a product, type helpbrowser to open the Help browser. In the
Contents pane, click + for a product to view the help topics, and then select
the Examples entry.

File Exchange
The MathWorks Web site features a user-contributed code library,
from which you can download free M-files contributed by users
and developers of MATLAB software, Simulink® software, and
related products. To view the files available to download, go to the
MATLAB Central File Exchange page on the MathWorks Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp, or
access it via the Help > Web menu in any desktop component.

6-4

http://www.mathworks.com/matlabcentral/fileexchange/index.jsp

Ways to Edit, Evaluate, and Debug M-Files

Ways to Edit, Evaluate, and Debug M-Files
There are several methods for creating, editing, evaluating, and debugging
files with MATLAB® software.

Creating and Editing Files —
Options Instructions

MATLAB Editor See “Starting, Customizing, and Closing the Editor” on
page 6-7, and “Saving, Printing, and Closing Files in the
Editor” on page 6-73.

You can create, open, edit and save M-files as well as
other file types in the MATLAB Editor—see “Creating
and Editing Other Text File Types” on page 6-13.

Any text editor, such as Emacs or vi To specify another editor as the default
for use with MATLAB software, select
File > Preferences > Editor/Debugger, and
for Editor, specify the Text editor. Click the Help
button in the Preferences dialog box for details. Use
that editor by default, or use any other editor you open.
Regardless of the editor you use, you can debug M-files
using the MATLAB Editor or debugging functions.

Debugging M-Files – Options Instructions

General debugging tips See “Finding Errors, Debugging, and Correcting
M-Files” on page 6-97.

MATLAB Editor See

• “M-Lint Code Analyzer” on page 6-100 to identify
errors and make improvements.

• “Debugging Process and Features” on page 6-117 to
help you isolate run-time problems.

MATLAB debugging functions (for use
in the Command Window)

See function alternatives in “Debugging Process and
Features” on page 6-117.

6-5

6 Editing and Debugging M-Files

Use preferences for the Editor/Debugger to set up the editing and debugging
environment to best meet your needs.

For information about the MATLAB language and writing M-files, see the
Programming Fundamentals documentation.

6-6

Starting, Customizing, and Closing the Editor

Starting, Customizing, and Closing the Editor

In this section...

“Starting the Editor” on page 6-7

“Creating a New File in the Editor” on page 6-8

“Opening Existing Files in the Editor” on page 6-9

“Arranging Editor Documents” on page 6-11

“Preferences for the Editor” on page 6-11

“Creating and Editing Other Text File Types” on page 6-13

“Closing the Editor” on page 6-13

Starting the Editor
The MATLAB® Editor provides a graphical user interface for basic text
editing features for any file type, as well as for M-file debugging. The Editor
is a single tool that you can use for editing, debugging, or both. There are
various ways to start the Editor. The Editor automatically starts when you
open a document or create a new one. Once started, you can customize the
Editor to suit your needs.

This figure shows an example of the Editor outside of the desktop opened to
an existing M-file, and calls out some of the tool’s useful features.

6-7

6 Editing and Debugging M-Files

Toolbar for
cell features.

Set breakpoints
in the alley.

Colors highlight
syntax elements.

Status bar information includes
cursor line and column numbers.

Set the right-hand text limit using
Preferences > Editor/Debugger > Display.

The * after the filename indicates
the file has not been saved since
it was last modified.

Creating a New File in the Editor
To create a new text file in the Editor, either click the New M-file button
on the MATLAB desktop toolbar, or select File > New > M-File from the
MATLAB desktop. The Editor opens, if it is not already open, with an untitled
file in the MATLAB current directory, in which you can create an M-file or
another type of text file.

The location of the new file and the Editor are determined by document
positioning guidelines. You can rearrange the documents to suit your needs.
For details, see “Opening and Arranging Documents” on page 2-8.

If the Editor is open, create more new files by using the New M-file button
on the toolbar, or select File > New > M-File.

6-8

Starting, Customizing, and Closing the Editor

Other tools also provide features for creating new M-files. For example, in the
Command History, select statements, right-click, and select Create M-File
from the context menu. Similarly, create a new file from the context menu in
the Current Directory browser—see “Creating New M-Files” on page 5-55.

Function Alternative for Creating New Files
Type edit in the Command Window to create a new file in the Editor.

Type edit filename.ext to create the file filename.ext. If filename.ext
already exists in the current directory or on the MATLAB search path, this
opens the existing file. If filename.ext does not exist in the current directory
or on the MATLAB search path, a confirmation dialog box might appear
asking if you want to create a new file titled filename.ext:

• If you click Yes, the Editor creates a blank file titled filename.ext. If you
do not want the dialog to appear in this situation, select that check box in
the dialog. Then, the next time you type edit filename.ext, the file is
created without first prompting you.

• If you click No, the Editor does not create a new file. If you do not want
the dialog to appear in this situation, select that check box in the dialog.
In that case, the next time you type edit filename.ext, a “file not
found” message appears.

For more information about the confirmation dialog box, see “Confirmation
Dialogs Preferences” on page 2-69.

Opening Existing Files in the Editor
To open an existing file in the Editor, click the Open file button on the
desktop or Editor toolbar, or select File > Open.

The Open dialog box appears, listing all M-files. You can see different files by
changing the selection for Files of type in the dialog box. Type or select a file
name, and click Open. If you access the Open dialog box from the desktop,
the current directory files are shown, but if you access it from the Editor, the
files in the directory for the current file are shown.

The Editor opens, if it is not already open, with the file displayed. You can
have multiple Editor files open at once, and the location of the files and the

6-9

6 Editing and Debugging M-Files

Editor are determined by document positioning guidelines. You can rearrange
the documents to suit your needs. For details, see “Opening and Arranging
Documents” on page 2-8.

To make a document in the Editor become the current document, click it, or
select it from the Window menu or document bar.

M-File Cells
If you open an M-file that contains M-file cells, yellow highlighting and gray
horizontal lines might appear in the M-file, along with an information toolbar.
Cell mode is used for publishing results and rapid code iteration. An M-file
cell is denoted by a %% at the start of a line. MATLAB software interprets any
M-file that contains %% at the start of a line as including cells and the Editor
reflects the cell toolbar state and the cell display preferences, such as yellow
highlighting of the current cell and gray lines between cells.

The first time you open an M-file that contains cells, an information bar
appears below the cell toolbar, providing links for details about cell mode. To
dismiss the information bar, click the close box on the right side of the bar.
The information bar does not appear again, but you can get the same quick
access to the information about M-file cells from the information button on
the cell toolbar.

To hide the cell toolbar, right-click in the toolbar and select Cell Toolbar from
the context menu. If you do not want cell mode enabled, select Cell > Disable
Cell Mode. If cell mode is disabled when you quit a MATLAB session, it is
disabled the next time you start a MATLAB session; the converse is true
as well.

Other Methods for Opening Files in the Editor
These are other ways to open files in the Editor:

• Drag a file from another MATLAB desktop tool or a Microsoft® tool into
the Editor. For example, drag files from the Current Directory browser,
or from Windows® Explorer.

• Open files from the Current Directory browser—see “Opening Files” on
page 5-58.

6-10

Starting, Customizing, and Closing the Editor

• Select a file to open from the most recently used files, which are listed
at the bottom of the File menu in the Editor and all other desktop
tools. You can change the number of files appearing on the list—select
File > Preferences > Editor/Debugger and in the Most recently used
file list, specify the Number of entries.

• In the Editor or another desktop tool such as the Command Window, select
a file name, right-click, and select Open Selection from the context menu
to open that file. For details, see “Opening a Selection in an M-File” on
page 6-50.

• Set a preference that specifies that a MATLAB session, upon startup, is to
automatically open the files that were open when the previous MATLAB
session ended. Select File > Preferences > Editor/Debugger and in
the Opening files in editor area, select the check box for On restart
reopen files from previous MATLAB session.

Function Alternative for Opening an M-File. Use the edit or open
function to open an existing file in the Editor. For example, type

edit collatz.m

to open the file collatz.m in the Editor, where collatz.m is on the search
path or in the current directory. Use the relative or absolute path for the file
you want to open if it is not on the search path or in the current directory.

Arranging Editor Documents
You can arrange the size and location of M-files and other text documents you
open in the Editor. Editor documents follow the same arrangement practices
as other desktop documents. For details, see “Opening and Arranging
Documents” on page 2-8.

Preferences for the Editor
Using preferences, you can specify the default behavior for various aspects
of the Editor.

To set preferences for the Editor, select File > Preferences. The Preferences
dialog box opens showing Editor/Debugger Preferences.

6-11

6 Editing and Debugging M-Files

Appears only if EmacsLink
is registered with MATLAB.

6-12

Starting, Customizing, and Closing the Editor

Click the + next to Editor/Debugger in the left pane to view all categories of
Editor/Debugger preferences. Select a category and that preference pane
displays. Make changes and click Apply or OK.

Click the Help button in the Preferences dialog box for details about
Editor/Debugger preferences.

You can also set preferences for the Editor toolbars. Select
File > Preferences > Toolbars, and from the Toolbar drop-down list select
Editor or Editor Cell Mode, depending on the toolbar for which you want
to set preferences. Click the Help button in the Preferences dialog box for
more information.

Creating and Editing Other Text File Types
You can edit any type of text file using the MATLAB Editor. For example, you
can open and edit an HTML file. Note that you can run or debug only M-files
from the Editor.

When working with C/C++, Java™, and TLC programming languages,
as well as XML or HTML, you can specify syntax highlighting
and indenting preferences appropriate to those languages. Select
File > Preferences > Editor/Debugger > Language. For details, click
the Help button in the dialog box.

Closing the Editor
To close the Editor, click the Close box in the title bar of the Editor. This is
different from the Close box in the menu bar of the Editor, which closes the
current file when multiple files are open in a single window.

Close box for
Editor/Debugger.

Close box for
current file.

6-13

6 Editing and Debugging M-Files

If multiple files are open, with each in a separate window, close each window
separately. To close all files at once, select Close All Documents from the
Window menu. Note that this will close other desktop documents as well,
such as variables in the Variable Editor, and it will close the tools as well, that
is, the Editor and Variable Editor, for example.

When you close the Editor and any of the open files have unsaved changes,
you are prompted to save the files.

6-14

Entering Statements in the Editor

Entering Statements in the Editor

In this section...

“Use Command Window Features in the Editor” on page 6-15

“Changing the Case of Selected Text” on page 6-15

“Undo and Redo” on page 6-16

“Adding Comments” on page 6-16

“Tab Completion in the Editor” on page 6-22

Use Command Window Features in the Editor
After opening an existing file or creating a new file in the Editor, enter
statements in the file. Follow the same rules you would use for entering
statements in the Command Window as described in Chapter 3, “Running
Functions — Command Window and History”:

• “Case and Space Sensitivity” on page 3-14

• “Matching Delimiters (Parentheses)” on page 3-16

• “Entering Multiple Functions in a Line” on page 3-17

• “Entering Long Statements (Line Continuation)” on page 3-17

• “Suppressing Output” on page 3-29

• “Formatting and Spacing Numeric Output” on page 3-30

Also see “Getting Help on Selection for Functions” on page 4-50, and the
Editor features described in the remainder of this section.

Changing the Case of Selected Text
To change the case of text in the Editor, select the text. Then, from the Text
menu, select one of the following:

• Change to Upper Case to change all text to uppercase

• Change to Lower Case to change all text to lowercase

6-15

6 Editing and Debugging M-Files

• Reverse Case to change the case of each letter

This is useful, for example, when copying syntax from help in an M-file, where
function and variable names are distinguished by the use of uppercase. But
because of that, the code will not run in the MATLAB® Editor or Command
Window. In this example, the text was copied and pasted from the output
of help get.

V = GET(H, 'Default')

Select all of the text. Select Text > Change to Lower Case. The text
becomes

v = get(h, 'default')

If instead you select Reverse Case for

V = GET(H, 'Default')

the case changes to

v = get(h, 'dEFAULT')

Undo and Redo
You can undo many of the Editor actions listed in Edit and Text menus.
Select Edit > Undo. You can undo multiple times in succession until there
are no remaining actions to undo. Select Edit > Redo to reverse an undo.

Adding Comments
Comments in an M-file are strings or statements that do not execute. Add
comments in an M-file to describe the code or how to use it. Comments
determine what text displays when you run help for a file name. Use
comments when testing your files or looking for errors—temporarily turn
lines of code into comments to see how the M-file runs without those lines.
These topics provide details:

• “Commenting in M-Files Using the MATLAB® Editor” on page 6-17

• “Commenting in Java™ and C/C++ Files Using the MATLAB® Editor”
on page 6-18

6-16

Entering Statements in the Editor

• “Commenting in M-File Using Any Text Editor” on page 6-18

• “Commenting Out Part of a Statement” on page 6-20

• “Formatting Comments in M-Files” on page 6-21

Commenting in M-Files Using the MATLAB® Editor
You can comment the current line or a selection of lines in an M-file:

1 For a single line, position the cursor in that line. For multiple lines, click in
the line and then drag or Shift+click to select multiple lines.

2 Select Comment from the Text menu, or right-click and select it from
the context menu.

A comment symbol, %, is added at the start of each selected line, and the color
of the text becomes green or the color specified for comments—see “Syntax
Highlighting” on page 6-28.

To uncomment the current line or a selected group of lines, select Uncomment
from the Text menu, or right-click and select it from the context menu.

6-17

6 Editing and Debugging M-Files

Click in the area to the left of a line to select that line.
To select multiple lines, click+drag or shift+click.

Select Text -> Comment to make all the selected lines comments.

Commenting in Java™ and C/C++ Files Using the MATLAB®

Editor
For Java™ and C/C++ files, selecting Text > Comment adds the // symbols
at the front of the selected lines. Similarly, Text > Uncomment removes the
// symbols from the front of selected lines in Java and C/C++ files.

Commenting in M-File Using Any Text Editor
You can make any line in an M-file a comment by typing % at the beginning
of the line. To put a comment within a line, type % followed by the comment

6-18

Entering Statements in the Editor

text; MATLAB software treats all the information after the % on a line as
a comment.

MATLAB ignores this comment
line when you run the M-file.

This line produces an error
when you run the M-file.

To uncomment any line, delete the comment symbol, %.

To comment a contiguous group of lines, type %{ before the first line and
%} after the last line you want to comment. This is referred to as a block
comment. The lines that contain %{ and %} can contain spaces, but not
contain any other text. After typing the opening block comment symbol, %{,
all subsequent lines assume the syntax highlighting color for comments until
you type the closing block comment symbol, %}. Remove the block comment
symbols, %{ and %}, to uncomment the lines.

This examples shows some lines of code commented out. When you run the
M-file, the commented lines will not execute. This is useful when you want to
identify the section of a file that is not working as expected.

Comment a block of code by
adding %{ before the first line
and %} after the last line.

You can easily extend a block comment without losing the original block
comment, that is, create a nested block comment, as shown in the following
example.

6-19

6 Editing and Debugging M-Files

Original
comment

Extended
comment

Create a nested comment, that is, a block
comment within a block comment.

Commenting Out Part of a Statement
To comment out the end of a statement in an M-file, put the comment
character, %, before the comment. When you run the file, MATLAB software
ignores any text on the line after the %.

Any text following a % within a line
is considered to be a comment.

To comment out text within a multiline statement, use the ellipsis (...).
MATLAB ignores any text appearing after the ... on a line and continues
processing on the next line. This effectively makes a comment out of anything
on the current line that follows the The following example comments
out the Middle Initial line.

MATLAB ignores the text following the ... on the line

6-20

Entering Statements in the Editor

Note that Middle Initial is green, which is the syntax highlighting color for
a comment.

MATLAB continues processing the statement with the next line

MATLAB effectively runs

Formatting Comments in M-Files
To make comment lines in M-files wrap when they reach a certain column:

1 Specify the maximum column number using preferences for the Editor.
Select Language > M. For Comment formatting, set the Max width.

2 Select contiguous comment lines that you want to limit to the specified
maximum width.

3 Select Text > Wrap Selected Comments.

The selected comment lines are reformatted so that no comment line in the
selected area is longer than the maximum. Lines that were shorter than
the specified maximum are merged to make longer lines if they are at the
same level of indentation.

To automatically limit comment lines to the maximum width while you type,
select the Comment formatting preference to Autowrap comments.

For example, assume you select Autowrap comments and set the maximum
width to be 75 characters, which is the width that will fit on a printed page
using the default font for the Editor. When typing a comment line, as you
reach the 75th column, the comment automatically continues on the next line.

6-21

6 Editing and Debugging M-Files

Tab Completion in the Editor
The Editor helps you automatically complete the names of these items as
you type them in an M-file:

• Functions or models on the search path or in the current directory

• Variables, including structures, in the current workspace, where the
current workspace is shown in the Stack on the toolbar.

• Handle Graphics® properties for figures in the current workspace

Type the first few characters of the item name and then press the Tab key.
To use tab completion, you must have the tab completion preference for the
Editor selected. For details, see “Keyboard Preferences” on page 3-42.

Tab completion is also available in the Command Window. There are a few
minor differences in how tab completion works in the Command Window,
the most notable being that Command Window tab completion supports the
completion of file names, whereas the Editor tab completion does not.

Note Tab completion does not complete the names of variables you define in
an M-file, but only those variables in the current workspace. This means that
while editing, it only completes the names of variables in the base workspace.
While debugging, it only completes the names of variables in the current
function workspace.

These examples demonstrate how to use tab completion:

• “Basic Example — Unique Completion” on page 6-23

• “Multiple Possible Completions” on page 6-23

• “Narrowing Completions Shown” on page 6-24

• “Tab Completion for Structures” on page 6-26

• “Tab Completion for Properties” on page 6-26

• “Using Tab for Spacing” on page 6-27

6-22

Entering Statements in the Editor

Basic Example — Unique Completion
This example illustrates a basic use for tab completion in the Editor. In an
M-file opened in the Editor, type the beginning of a function or model on the
MATLAB search path or in the current directory, for example,

horz

and press Tab. The Editor automatically completes the name, which for this
example displays the function name

horzcat

Complete the statement, adding any arguments, operators, or options. If the
Editor does not complete the name horzcat but instead moves the cursor to
the right, you do not have the preference set for tab completion. The Editor
also moves the cursor to the right when you try to complete a file name; file
name tab completion is not supported in the Editor, but is supported in the
Command Window.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = horz

and press Tab, the Editor completes horzcat.

The Editor also completes the names of variables in the current workspace.
For example, if there is a variable costs_march in the currently selected
workspace, type cost and press Tab. The Editor completes the variable name
costs_march. If the Editor displays No Completions Found, costs_march
does not exist in the current workspace.

Multiple Possible Completions
If there is more than one name that starts with the characters you typed,
when you press the Tab key, the Editor displays a list of all names that start
with those characters. For example, assume you had created the variable
costs_march in the base workspace. In an M-file in the Editor, type

cos

6-23

6 Editing and Debugging M-Files

and press Tab. The Editor displays

The resulting list of possible completions includes the variable name you
created, costs_march, but also includes functions and models that begin with
cos, including cosets from Communications Toolbox™, if it is installed and
on the MATLAB search path.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. The Editor selects the first item in the
list that matches what you typed, in this case, costs_march. Press Enter (or
Return) or Tab to select that item, which completes the name in the M-file.
In the example, the Editor displays costs_march at the prompt.

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Esc. The list of possible completions might
include items that are not valid commands, such as private functions.

Narrowing Completions Shown
You can narrow the list of completions shown by typing a character and then
pressing Tab if the Keyboard preference Tab key narrows completions is
selected. This is particularly useful for large lists. For example, type cam and

6-24

Entering Statements in the Editor

press Tab to see the possible completions. There is a scroll bar with the list
because there are too many completions to be seen at once.

Type p and press Tab again. The Editor narrows the list, showing only all
possible camp completions.

6-25

6 Editing and Debugging M-Files

Continue narrowing the list in the same way. For the above example, type o
and press Tab to further narrow the list. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Structures
For structures that are in the current workspace, after the period separator,
press Tab. For example, type

mystruct.

and press Tab to display all fields of mystruct. If you type a structure and
include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct is
in the current workspace and contains no other fields that begin with n.

Tab Completion for Properties
Complete property names for figures in the current workspace using tab
completion, as in this graphics example. Here, f is a figure. Type

set(f, 'pap

and press Tab. The Editor displays

6-26

Entering Statements in the Editor

Select a property from the list. For example, type

u

and press Enter. The Editor completes the property, including the closing
quote.

set(f, 'paperunits'

Continue adding to the statement, as in this example,

set(f, 'paperunits', 'c

and press Tab. The Editor automatically completes the property

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

Using Tab for Spacing
If the preference for tab completion is selected, and you want to also use the
Tab key to add spacing within your statements, add a space before pressing
Tab. For example, to create this statement

if a=mate %test input value

add a space after mate and then press Tab. If you do not include the space,
the following happens instead:

if a=material

This is because the tab completion feature automatically causes mate to
complete as the material function.

Alternatively, turn off the tab completion preference to use Tab for spacing
in the Editor.

6-27

6 Editing and Debugging M-Files

Appearance of an M-File — Making Files More Readable

In this section...

“Syntax Highlighting” on page 6-28

“Indenting” on page 6-29

“Function Indenting” on page 6-30

“Line and Column Numbers” on page 6-30

“Highlight Current Line” on page 6-30

“Right-Hand Text Limit” on page 6-31

“Class, Function, or Subfunction” on page 6-31

“Code Folding — Expanding and Collapsing M-File Constructs” on page 6-32

“Split Screen Display” on page 6-39

Note You can specify the default behaviors for some of these features—see
“Preferences” on page 2-61.

Syntax Highlighting
Some entries appear in different colors to help you better find matching
elements, such as if/else statements. Similarly, unterminated strings have
a different color than terminated strings. This is called syntax highlighting
and is used in the Command Window and History, as well as in the Editor.
For more information, see the Command Window documentation for “Syntax
Highlighting” on page 3-15.

When you paste or drag a selection from the Editor to another application,
such as Microsoft® Word, the pasted text maintains the syntax highlighting
colors and font characteristics from the Editor. MATLAB® software pastes the
selection to the clipboard in RTF format, which many Microsoft Windows®

and Macintosh® applications support.

6-28

Appearance of an M-File — Making Files More Readable

Indenting

Automatic Indenting
You can set an indenting preference so that program control
entries are automatically indented to make reading loops,
such as while/end statements, easier. To do so, select
File > Preferences > Editor/Debugger > Language, and select
a Language, for example, M. For Indenting for Enter key, select Smart
indenting or Block indent, and then click OK. Use No indent instead if you
want to indent manually. For more information about indenting preferences,
click Help in the Preferences dialog box. Specify the indenting size and other
options by selecting File > Preferences > Editor/Debugger > Tab.

Manual Indenting
You can manually apply smart indenting to selected lines—select the lines
and then select Smart Indent from the Text menu, or right-click and select
it from the context menu. This feature indents lines that start with keyword
functions or that follow lines containing certain keyword functions. Smart
indenting can help you to follow the code sequence.

To move the current or selected lines further to the left, select Decrease
Indent from the Text menu. To move the current or selected lines further to
the right, select Increase Indent from the Text menu.

You can also indent a line by pressing the Tab key at the start of a line.
Or select a line or group or lines and press the Tab key. Press Shift+Tab
to decrease the indent for the selected lines. This works differently if you
select the Editor/Debugger Tab preference for Emacs-style Tab key smart
indenting—when you position the cursor in any line or select a group of lines
and press Tab, the lines indent according to smart indenting practices.

For more information about manual indenting, select
File > Preferences > Editor/Debugger > Tab and then click Help.

6-29

6 Editing and Debugging M-Files

Function Indenting
If you select the language preference for smart indent, you can select from
three indenting options when you enter a subfunction or a nested function (a
function within a function) in the Editor. For details, see .

Line and Column Numbers
Line numbers display along the left side of the Editor window. You can
elect not to show the line numbers using preferences. For details, select
File > Preferences > Editor/Debugger > Display, and then click Help.

The line and column numbers for the current cursor position are shown in
the far right side of the status bar in the Editor.

Highlight Current Line
You can set a preference to highlight the current line, that is the line with the
caret (also called the cursor). This is useful, for example, to help you see
where copied text will be inserted when you paste.

To highlight the current line, select
File > Preferences > Editor/Debugger > Display, and under General
display options, select the check box for Highlight current line. You can
also specify the color used to highlight the line.

6-30

Appearance of an M-File — Making Files More Readable

Current line (where the caret/cursor) is highlighted.

Right-Hand Text Limit
By default, a light red vertical line (rule) appears at column 75 in the Editor,
providing a cue as to when a line becomes wider than desired, which is
useful if you plan to print the file, for example. You can hide the line or
change the column number at which it appears. For more information, select
File > Preferences > Editor/Debugger > Display, and then click Help.

Class, Function, or Subfunction
The right side of the Editor status bar shows the class, function, or
subfunction where the cursor is currently placed, depending on the type of file
you are viewing, as follows:

• Class file — The name of the class followed by the name of the current
function (if any) that the cursor is within. This is true regardless of the
type of function in which the cursor is placed (nested, in a methods block,
outside a classdef file, and so on).

6-31

6 Editing and Debugging M-Files

• Function file — The name of the main function followed by the name of the
current function the cursor is within (if any). This is true regardless of the
type of function in which the cursor is placed (subfunction or nested).

Code Folding — Expanding and Collapsing M-File
Constructs
Code folding is the ability to expand and collapse certain M-file programming
constructs. This improves readability when an M-file contains numerous
subfunctions or other blocks of code that you want to hide when you are not
currently working with that part of the file.

You can set preferences to enable or disable the ability to expand and collapse
the following M-file programming constructs:

• Block comments

• Cells used for rapid code iteration and publishing

• Class code

• Class enumeration blocks

• Class event blocks

• Class method blocks

• Class properties blocks

• For and parfor blocks

• Function and class help

• Function code

• If/else blocks

• Switch/case blocks

• Try/catch blocks

• While blocks

By default, code folding is enabled for all programming
constructs except if/else blocks and switch/case blocks. Select
File > Preferences > Editor/Debugger > Code Folding, and then click
Help for details on setting preferences.

6-32

Appearance of an M-File — Making Files More Readable

When you fold a construct, all the code associated with that construct is
collapsed such that the Editor displays only the first line of the construct

prepended by the expand icon () and appended with an ellipsis icon ()
to indicate there is more code. When you expand a construct, all the code
associated with that construct appears and the first line of the construct is
prepended with the collapse icon ().

The following image shows the collatzall and collatzplot_new functions
collapsed and the collatz function code expanded.

6-33

6 Editing and Debugging M-Files

When you expand a function or class, but collapse its associated help code,
the Editor displays all the function or class code and just the H1 line of the

6-34

Appearance of an M-File — Making Files More Readable

help code. The H1 line ends with a commented ellipsis icon to indicate
there is additional help code, as shown in the following image.

To expand code for a construct that is currently collapsed, do one of the
following:

• Click the expand icon to the left of the construct that you want to expand.

• Place your cursor in the code that you want to expand, right-click, and then
select Code Folding > Expand from the context menu.

To collapse code for a construct that is currently expanded, do one of the
following:

6-35

6 Editing and Debugging M-Files

• Click the collapse icon to the left of the construct that you want to
collapse.

• Place your cursor in the code that you want to collapse, right-click, and
then select Code Folding > Collapse from the context menu.

To expand or collapse all of the code in an M-file, place your cursor anywhere
within the M-file, right-click, and then select Code Folding > Expand All or
Code Folding > Collapse All from the context menu.

For information on the structure of an M-file, including a description of a
function definition line and an H1 line, see Basic Parts of an M-File in the
Programming Fundamentals documentation.

Viewing Folded Code in a ToolTip
You can view code that is currently folded by positioning the pointer over its

ellipsis icon . The code appears in a ToolTip. This lets you quickly view
the code without unfolding it.

The following image shows the ToolTip that appears when you place
the pointer over the ellipsis icon on line 6 of collatzall.m when the
collatzplot_new function is folded.

6-36

Appearance of an M-File — Making Files More Readable

Code Folding Behavior and Preferences
Be aware of the following:

• You can change the current code folding settings, by selecting File >
Preferences > Editor/Debugger > Code Folding. If needed, click Help
for assistance.

• By default, the first time you open an M-file that existed before MATLAB
Version 7.5 (R2007b) using MATLAB Version 7.5 (R2007b) or later, code
folding is enabled and all constructs are expanded.

• Constructs that are collapsed when you close an M-file remain collapsed
when you reopen the file.

6-37

6 Editing and Debugging M-Files

• If you copy a collapsed construct from one region of an M-file and paste it in
another region, the construct is expanded in the pasted location.

• If you print a file with one or more collapsed constructs, those constructs
are expanded in the printed version of the file.

• If your code contains syntax errors, the code folding icon or its end indicator
appear to be placed in the wrong location. For example, suppose your code
currently appears as shown in the first figure that follows. If you delete
the while statement, it introduces a syntax error at line 3, as shown in the
second figure that follows. Notice that the collapse icon remains in the
same location it held for the syntactically correct code. After you correct
the syntax error, the Editor adjusts and displays the code folding icon
appropriately.

6-38

Appearance of an M-File — Making Files More Readable

Split Screen Display
You can simultaneously display two different parts of a file in the Editor. This
makes it easy to compare different lines in a file or to copy and paste from
one part of a file to another.

Split the screen horizontally by selecting Window > Split
Screen > Top/Bottom. Or to split it vertically, select Left/Right.

Alternatively, when there is a scroll bar, split the document into top and
bottom views by dragging the splitter bar, as shown in the following
illustration, down from above the vertical scroll bar. Similarly, to split into
left and right views, drag the splitter bar from the left of the horizontal scroll
bar. The pointer assumes a double-headed arrow shape when you position
it on the splitter bar.

6-39

6 Editing and Debugging M-Files

Drag splitter bar down to
create top and bottom views.

Drag splitter
bar right to
create left and
right views.

6-40

Appearance of an M-File — Making Files More Readable

Top/bottom split

Double-click the
splitter to remove
the split.

Drag the splitter
to resize the views.

6-41

6 Editing and Debugging M-Files

Left/right split

Double-click the splitter to remove the split.

Drag the splitter to resize the views.

Resize of the views by dragging the splitter. The pointer assumes an arrow
shape when you position it on the splitter.

Only one view is active at any time, meaning, you will see only the cursor
in one of the views. To change the active view, select Window > Split
Screen > Switch Focus or its keyboard equivalent, which is shown with the
menu item. The cursor returns to its last position in that view.

Make changes to the document in either view. Both views of the file are
always current, so you see the changes in either view.

6-42

Appearance of an M-File — Making Files More Readable

You split each open document individually, so there can be multiple views
at once. You can split some documents horizontally, others vertically, and
leave others unsplit. When you open a document, it always opens unsplit,
regardless of its split status when you last had it open.

You can remove a document split using any of these methods:

• Drag the splitter to an edge of the window.

• Double-click the splitter.

• Select Window > Split > Screen > Off.

See also “Summary of Actions for Arranging Documents” on page 2-11 for
instructions to display multiple documents simultaneously.

6-43

6 Editing and Debugging M-Files

Navigating in an M-File

In this section...

“Going to a Line Number” on page 6-44

“Going to a Function (Subfunctions and Nested Functions)” on page 6-44

“Going to a Bookmark” on page 6-45

“Navigating Back and Forward in Files” on page 6-46

“Opening a Selection in an M-File” on page 6-50

Note See also “Finding Text in Files” on page 6-51.

Going to a Line Number
Select Go > Go To. In the resulting Go To dialog box, select the Line
number option, enter a line number, and click OK. The cursor moves to
that line number in the current M-file.

Going to a Function (Subfunctions and Nested
Functions)
To go to a function within an M-file (either a subfunction or a nested function),
select Go > Go To. In the resulting Go To dialog box, select the Function
option, and then select an entry from the list of subfunctions and nested
functions in the file. Click OK.

6-44

Navigating in an M-File

Functions in the list appear alphabetically by name. To order them by their
position in the file, click the Line column heading. The list does not include
functions that are called from the M-file, but only shows lines in the current
M-file that begin with a function statement.

Alternatively, click the Show Functions button on the toolbar. Then select
the subfunction or nested function you want to go to from the list. For both
class and function files, the functions are listed in alphabetical order—except
that in function files, the name of the main function always appears at the
top of the list.

Going to a Cell
For M-file scripts that contain cells for rapid code iteration or publishing,
the Go To dialog box lists cell titles.

Going to a Bookmark
You can set a bookmark at a line in a file in the Editor so you can quickly go to
the bookmarked line. This is particularly useful in long files. For example,
while working on a line, if you need to look at another part of the file and then
return, set a bookmark at the current line, go to the other part of the file,
and then go back to the bookmark.

6-45

6 Editing and Debugging M-Files

To set a bookmark, position the cursor anywhere in the line and select
Go > Set/Clear Bookmark. A bookmark icon appears to the left of the line.

To go to a bookmark, select Next Bookmark or Previous Bookmark from
the Go menu.

To clear a bookmark, position the cursor anywhere in the line and select
Go > Select/Clear Bookmark.

Bookmarks are not maintained after you close a file.

Navigating Back and Forward in Files
Use Go > Back (and Go > Forward) to go to lines you previously edited
or navigated to in a file. The feature goes to the lines in the sequence you
accessed them. As an alternative to the menu items, use the Back and
Forward buttons on the toolbar.

6-46

Navigating in an M-File

Use Back and Forward buttons or
menu items to navigate to lines you
previously edited or navigated to.

For example, if you open a file and make changes at lines 3, 9, and 6, use
Go > Back to return to line 9, then 3, then 1, and then use Go > Forward
to go from 1 to 3 to 9 to 6, and then return to 3. Detailed instructions to
accomplish this are:

1 Select Go > Back to return from line 6 to line 9.

2 Select Go > Back again to return to line 3.

3 Select Go > Back again to return to line 1, which is the first line you
originally navigate to in a file by virtue of opening it.

4 Use Go > Forward to reverse the direction of the feature—select
Go > Forward to navigate to line 3.

5 Select Go > Forward to navigate to line 9.

6-47

6 Editing and Debugging M-Files

6 Reverse the direction of the feature again—select Go > Back to navigate
to line 3.

Lines Navigated to Using Go Back
Use Go > Back and Forward to go to lines you previously edited or navigated
to via these features:

Feature Examples Notes

Opening a file (first line in
the file)

File > Open None

Changes made using
text-editing tools

Delete key, or
Text > Increase Indent

Edits made to a selection of lines are
represented by the first line in the
selection.

Changes made using Cell > Insert
Cell Divider and Cell > Insert
Text Markup are not considered as
having been previously navigated to.

Changes made using Find
and Replace

Edit > Find and Replace Changes made using Replace All
are not considered as having been
previously navigated to.

Find features Edit > Find and Replace,
Find Next, Find Previous,
and Find Selection

None

Incremental search Ctrl+S and Ctrl+R None

Show Function button None

Opening a selection File > Open Selection None

Go to Go > Go To line number,
function, or cell title

None

Bookmark navigation Go > Next Bookmark and
Previous Bookmark

A line at which you Set/Clear
Bookmark is not considered as
having been previously navigated to.

6-48

Navigating in an M-File

Feature Examples Notes

Hyperlink access From warnings or errors in
the Command Window, from
Find Files results, and from
reports like the Profiler

None

Debugging navigation Lines with breakpoints
that were stopped at while
running, and lines stepped
to

A line at which you set a breakpoint
is not considered as having been
previously navigated to, unless it was
actually stopped at during execution.

Cell mode navigation Cell > Next Cell and
Previous Cell, and
Cell > Evaluate Current
Cell and Advance

Lines accessed using
Cell > Evaluate Current Cell
are not considered as having been
previously navigated to.

Interrupting the Sequence of Go Back and Forward
If you use Go > Back and Go > Forward, and then edit another line or
navigate to another line using the list of features described in the above table,
the Go > Back or Go > Forward feature sequence is interrupted. You can
still go to the lines preceding the interruption point in the sequence, but you
cannot go to any lines after that point. Any lines you edit or navigate to after
interrupting the sequence are added to the sequence after the interruption
point.

For example:

1 Open a file and edit lines 2, then 4, and then 6.

2 Use Go > Back to move back to line 4, and then back to line 2.

3 You could then Go > Forward to lines 4 and 6, or Go > Back to line 1.

Instead, make an edit at line 3. Now you cannot Go > Forward to lines 4
and 6 and you can only Go > Back to line 2 and then line 1.

Closed Files and Behavior of Go Back and Forward
Go > Back and Forward do not go to lines in closed files.

6-49

6 Editing and Debugging M-Files

Split Screen and Behavior of Go Back and Forward
When you have a split screen display, Go > Back and Forward go to the
view in which the line was originally navigated to or edited in. If you remove
the split, Go > Back and Forward do not go to any lines that were visited
in the lower (or right) view.

Opening a Selection in an M-File
You can open a subfunction, function, file, variable, or Simulink® model
from within a file in the Editor. Position the cursor in the name and then
right-click and select Open Selection from the context menu. Based on
what the selection is, the Editor performs a different action, as described in
the table that follows.

Selection Action

Subfunction Cursor moves to the subfunction within the current
M-file. If no subfunction by that name is found in
the current M-file, the Editor runs the open function
on the selection, which opens the selection in the
appropriate tool, as shown for the other selection
types in this table.

M-file or other text
file

Opens in the Editor.

Figure file (.fig) Opens in a figure window.

Variable Opens in the Variable Editor.

Model Opens in Simulink.

Other If the selection is some other type, Open selection
looks for a matching file in a private directory in
the current directory and performs the appropriate
action.

6-50

Finding Text in Files

Finding Text in Files

In this section...

“Finding Text in the Current File” on page 6-51

“Finding and Replacing Text in the Current File” on page 6-51

“Finding Files or Text in Multiple Files” on page 6-53

“Incremental Search” on page 6-53

Finding Text in the Current File
Within the current file, select the text you want to find. From the Edit menu,
select Find Selection. The next occurrence of that text is selected. Select
Find Selection again (or Find Next) to continue finding more occurrences of
the text.

To find the previous occurrence of selected text (find backwards) in the current
file, select Find Previous from the Edit menu. The previous occurrence of
the text is selected. Repeat to continue finding the previous occurrences of
the text.

Finding and Replacing Text in the Current File
You can search for specified text within multiple files, and then replace the
text within a file.

Finding Text
To search for text in files, click the Find button in the Editor toolbar, or
select Edit > Find and Replace. Complete the resulting Find Replace
dialog box.

6-51

6 Editing and Debugging M-Files

The search begins at the current cursor position. The Editor finds the text
you specified and highlights it. To find another occurrence, click Find Next
or Find Previous, or use the keyboard shortcuts F3 and Shift+F3 (or
Command+F3 and Command+Shift+F3 with Macintosh® key bindings).

The MATLAB® software beeps when a search for Find Next reaches the end
of the file, or when a search for Find Previous reaches the top of the file. If
you have Wrap around selected, it continues searching after beeping.

Use F3 and Shift+F3 to continue finding the specified text even after closing
the Find Replace dialog box. You can go to another file and find the specified
text in it.

Change the selection in the Look in field to search for the specified text in
other Microsoft® desktop tools.

Replacing Text
After finding text using the Find Replace dialog box, you can replace the
text in the current file:

1 In the Replace with field, type the text that is to replace the found text.

2 Click Replace to replace the text currently selected, or click Replace All
to replace all instances in the current file.

The text is replaced. For Replace All, the number of instances that were
replaced appears in the Editor status bar.

6-52

Finding Text in Files

3 To save the changes to the file, select Save from the File menu.

You can repeat this for multiple files.

Function Alternative for Finding Text
Use lookfor to search for the specified text in the first line of help for all
M-files on the search path.

Finding Files or Text in Multiple Files
To find directories and file names that include specified text, or whose
contents contain specified text, use Edit > Find Files. For details, see
“Finding Files and Content Within Files” on page 5-60.

Incremental Search
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the current file. It is similar to the Emacs
search feature. Incremental search is also available in the Command
Window—see “Incremental Search” on page 3-34.

To use the incremental search feature in the Editor, follow these steps:

1 Position the cursor where you want the search to begin.

2 How you begin the incremental search depends on your setting for the
Editor/Debugger key bindings preference and in which direction you want
to search:

• Press Ctrl+S to search forward or Ctrl+R to search backward for Emacs
and Macintosh key bindings.

• Press Ctrl+Shift+S to search forward or Ctrl+Shift+R to search
backward for Windows® key bindings.

An incremental search field appears in the left side of the status bar of the
current file window. F Inc Search means search Forward from the cursor.
The field label is instead R Inc Search when you search backwards.

6-53

6 Editing and Debugging M-Files

Incremental search field.

F means search forward from the cursor.

3 In the incremental search field, type the text you want to find. For example,
type plot.

As you type the first letter, p, the first occurrence of that letter after the
cursor is highlighted. In the example shown, the cursor is in the middle of
line 2, so the first occurrence of p, the p in problem on line 2, is highlighted.

6-54

Finding Text in Files

Incremental search is case sensitive for uppercase letters. In the above
example, searching for uppercase P, would instead find the P in Prepare
on line 3.

When you type the next letter in the term you are searching for, the first
occurrence of the term becomes highlighted. In the example, when you add
the letter l to the p so that the incremental search field now has pl, the
pl in plot on line 8 is highlighted. When you add ot to the term in the
incremental search field, the whole word plot in line 8 is highlighted.

• If you mistype in the incremental search field, use the backspace key to
remove the last letters and make corrections.

• After finding the p, press Ctrl+W to highlight the rest of the word found,
in this case plot, which also puts the complete word in incremental
search field.

4 To find the next occurrence of plot in the file, press Ctrl+S. To find the
previous occurrence of the text, press Ctrl+R.

5 If MATLAB beeps, it either means the search is at the end or beginning of
the file, or it means that the text was not found.

• When the text is not found, Failing appears in the incremental search
field. Modify the search term in the incremental search field and try
again. Use Ctrl+G to automatically remove characters back to the last
successful search. For example, if plode fails, Ctrl+G removes the de
from the search term because plo does exist in the file.

• When at the end or beginning of the file, press Ctrl+S or Ctrl+R again
to wrap to the beginning (or end) of the file and continue the search.
Use Ctrl+G after a finding a string to clear the search and return the
cursor to the starting point.

6 To end the incremental search, press Esc or Enter, or any other
noncharacter or number key except Tab or backspace.

The incremental search field no longer appears in the status bar. The
cursor is now located at the position where the string was last found.

6-55

6 Editing and Debugging M-Files

If you press Ctrl+S or Ctrl+R after displaying the blank incremental search
field, the search term from your previous incremental search appears in the
field. Then the backspace key deletes the entire previous search term, rather
than just the last letter.

6-56

Comparing Files and Directories

Comparing Files and Directories

In this section...

“What Is the File and Directory Comparisons Tool?” on page 6-57

“Comparing Two Text Files” on page 6-57

“Comparing Two MAT-Files” on page 6-60

“Comparing Two Binary Files” on page 6-63

“Comparing Two Directories” on page 6-64

“Using Features of the File and Directory Comparisons Tool” on page 6-67

“Alternative Ways to Access the Tool” on page 6-69

What Is the File and Directory Comparisons Tool?
The File and Directory Comparisons tool determines and displays the
differences between two files or two directories.

You can use this tool to:

• Compare lines in two text files (some other applications refer to this as
a file diff operation).

• Compare variables in two MAT-files.

• Determine whether the contents of two binary files are the same.

• Compare two directories to determine which file names are unique to each
directory.

• Compare two directories to determine if files with the same name in each
directory have the same content.

Comparing Two Text Files
When you use the File and Directories Comparisons tool to compare two text
files, a window opens and presents the two files side by side, along with
symbols to indicate how you can adjust the files to make them match. This
is useful, for example, when you want to compare the latest version of a text
file to an autosave version.

6-57

6 Editing and Debugging M-Files

To compare two text files, follow these steps:

1 Open one of the text files you want to compare in the Editor.

To open the example file provided, lengthofline.m, run the following
command in the Command Window:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'))

2 Select Tools > Compare Against > Browse. Navigate to the file you
want to compare against, select the file, and click Open. To open the
example file provided, select lengthofline2.m from the directory where
you found lengthofline.m. Other options available are the following:

• Tools > Compare Against > Autosave Version to compare the
open file to the Editor’s automatic copy, file name.asv. For more
information, see “Autosave” on page 6-74.

• Tools > Compare Against Version on Disk to compare an open file
that has been changed, but not saved, to the saved version.

The File and Directory Comparisons tool opens, displaying the files side by
side and highlighting lines that do not match, as follows:

• Pink highlighting and an x at the start of a line indicate that the content
of the lines differs between the two files.

• Green highlighting and a > at the start of a line indicate a line that
exists in the file presented on the right side of the page but not in the file
presented on the left side of the page.

• Green highlighting and a < at the end of a line indicate a line that
exists in the file presented on the left side of the page but not in the file
presented on the right side of the page.

6-58

Comparing Files and Directories

3 Use the features of the File Comparison and Directory Comparison tool to
work with the results.

Typically, when this tool compares two text files, it does not do a simple
line-by-line comparison. In the previous image, for example, the tool
determines that lengthofline2.m, has a line of code that does not exist in

6-59

6 Editing and Debugging M-Files

lengthofline.m, and highlights it (line 23) in green. Also notice that the tool
takes the additional line into account and determines that the line containing
the end statement in each file matches, even though the end statement does
not occur on the same line number.

If the files being compared are extremely long, however, the tool may run out
of memory in attempting to perform the file comparison. It then displays the
message, Maximum file length exceeded. Defaulting to line-by-line
comparison. In this case, the tool highlights the lines containing the end
statement because in performing a simple line-by-line comparison it finds
that the last line in one file does not match the last line in the other file.

Comparing Two MAT-Files
When you use the File and Directory Comparisons tool to compare two
MAT-files, a window opens and presents the variables in the two files side by
side. The tool enables you to:

• See which variables are common to each file and which are unique.

• Load the contents of the variables into the Variable Editor.

• Load the MAT-files into the workspace.

To compare two MAT-files, follow these steps:

1 Select Desktop > File and Directory Comparisons.

The File and Directory Comparisons window opens.

6-60

Comparing Files and Directories

2 Click the New File Comparison button: .

3 Drag one of the MAT-files that you want to compare from the Current
Directory browser or Windows® Explorer to the left side of the File and
Directory Comparisons window.

4 Drag one of the MAT-files that you want to compare from the Current
Directory browser or Windows Explorer to the right side of the File and
Directory Comparisons window.

6-61

6 Editing and Debugging M-Files

The File and Directory Comparisons tool displays the file variable names
side by side and highlights variables that do not match, as follows:

• Pink highlighting indicates that the values of the variables differ
between the two files.

• Green highlighting indicates a variable that exists in the file presented
on the right, but not in the file presented on the left.

• Purple highlighting indicates a variable that exists in the file presented
on the left, but not in the file presented on the right.

The following image shows the results when you compare
matlabroot/toolbox/matlab/demos/gatlin2.mat to
matlabroot/toolbox/matlab/demos/gatlin.mat.

6-62

Comparing Files and Directories

5 Click a variable name to view its contents in the Variable Editor.

6 Click a load link to load the specified file’s variables into the workspace.

Comparing Two Binary Files
When you use the File and Directory Comparisons tool to compare two
non-MAT-file binary files, such as DLL files or MEX-files, the tool returns a
message indicating whether the files are the same.

6-63

6 Editing and Debugging M-Files

To compare two binary files, follow the same steps in “Comparing Two
MAT-Files” on page 6-60. If the files are the same, the tool displays the
message: The files are identical. If the files differ, the tool displays
the message: The files are different. MATLAB cannot display the
differences between files of these types.

Comparing Two Directories
When you use the File and Directory Comparisons tool to compare two
directories, a window opens and presents the contents of the directories, side
by side. The tool enables you to:

• Determine the files that the directories have in common.

• Determine if files with identical names that are common to both directories
also have identical content.

• Open for comparison two files that are common to both directories, but
have different content.

• Open for comparison two subdirectories that are common to both
directories, but have different content.

• Open a file for viewing in the Editor.

To compare two directories, follow these steps:

1 Select Desktop > File and Directory Comparisons.

The File and Directory Comparisons window opens.

2 Select File > New Directory Comparison or click the New Directory
Comparison button .

The File and Directory Comparisons window refreshes with a Type a
directory name here field on each side of the tool.

3 Type or browse to a directory on each side of the tool.

The File and Directory Comparisons tool displays the contents of the
directories side by side and highlights files and subdirectories that do not
match, as follows:

6-64

Comparing Files and Directories

• Pink highlighting indicates that the contents of the files or subdirectories
differ.

• Green highlighting indicates a file or subdirectory that exists in the
directory on the right, but not in the directory on the left.

• Purple highlighting indicates a file or subdirectory that exists in the
directory on the left, but not in the directory on the right.

The following image shows an example of the File and Directory
Comparisons tool when two directories are compared.

6-65

6 Editing and Debugging M-Files

4 Click the open link next to a file name to open that file in the Editor.

5 Click the compare link next to a set of directory names that are highlighted
in pink to refresh the File and Directory Comparisons tool with the two
highlighted directories presented for comparison.

6-66

Comparing Files and Directories

6 Click the compare link next to a set of file names that are highlighted
in pink to refresh the File and Directory Comparisons tool with the two
highlighted files presented for comparison.

Using Features of the File and Directory Comparisons
Tool
The File and Directory Comparisons tool provides features that let you do any
of the tasks described in the following sections:

• “Increase or Decrease Line Lengths Shown for Text Files” on page 6-67

• “Exchange Positions” on page 6-67

• “Show Updated Files” on page 6-68

• “Find Text” on page 6-68

• “Replacing a File or Directory Being Compared with Another File or
Directory” on page 6-68

• “View New Comparisons” on page 6-68

• “View Previous Comparisons” on page 6-69

Increase or Decrease Line Lengths Shown for Text Files
When comparing text files, the display is 60 columns wide, by default. To
increase the display width, type a high number in the Columns visible
field, and then drag the vertical edges of the window to make it wider. If
you want to keep the window size narrow, but that results in more columns
appearing for the file on the left than for the file on the right, reduce the
number for Columns visible to display a sufficient number of columns for
both files, given the window width.

Exchange Positions
To move the file or directory on the left side to the right side and vice versa,

select File > Swap Sides, or click the Swap Sides button .

6-67

6 Editing and Debugging M-Files

Show Updated Files
After making changes to and saving the files in the Editor, update the results
in the File Comparisons tool by selecting File > Refresh or clicking the
Refresh button .

Find Text
To find a phrase in the current display, select Edit > Find, or click the Find
text button . The resulting Find dialog box is the same as the one you
use in the Command Window. For more information, see “Find Dialog Box”
on page 3-33.

Replacing a File or Directory Being Compared with Another
File or Directory
If the tool is currently comparing files, you can replace an existing file in
the tool by doing one of the following:

• Drag a different file name from the Current Directory browser or Windows
Explorer to the left or right side of the File and Directory Comparisons tool,
replacing the file currently shown there.

• Type the path to a file or browse to find a file using the field below the File
and Directory Comparisons toolbar.

• Select File > Open.

If the tool is currently comparing directories, you can replace an existing
directory by typing the path to a directory or browsing to a directory using the
field below the File and Directory Comparisons toolbar.

View New Comparisons
You can perform another file comparison by selecting File > New File
Comparison or clicking the New File Comparison button .

You can perform another directory comparison by selecting File > New
Directory Comparison or clicking the New Directory Comparison button

. Supply the files or directories to compare as described in “Replacing a File
or Directory Being Compared with Another File or Directory” on page 6-68.

6-68

Comparing Files and Directories

View Previous Comparisons
You can see the results of previous comparisons in the current session by
selecting that comparison’s entry in the document bar (as shown at the bottom
of the window in the illustration in “Comparing Two Text Files” on page 6-57).
If you close the File and Directory Comparisons tool, the current and previous
comparisons are lost.

Alternative Ways to Access the Tool
In addition to the methods shown in the previous sections, you can also access
the File and Directory Comparisons tool using one of these methods:

• From the MATLAB® desktop, select Desktop > File and Directory
Comparisons.

• From the Current Directory browser, select a file or directory, right-click,
and from the context menu, select Compare Against.

• For two files or subdirectories in the same directory, from the Current
Directory browser, select the files or directories, right-click, and from the
context menu, select Compare Selected Files or Compare Selected
Directories.

Supply the files or directories to compare as described in “Replacing a File or
Directory Being Compared with Another File or Directory” on page 6-68.

6-69

6 Editing and Debugging M-Files

Keyboard Shortcuts in the Editor
Following is the list of keys that serve as shortcuts for using the Editor.
This list does not include shortcut keys (sometimes called hot keys) for
menu items—you can view those on the menus. If you select the Emacs
“Editor/Debugger Key Bindings” on page 3-44 preference, you can also use
the Ctrl+key combinations shown. See also general desktop “Keyboard
Shortcuts” on page 2-40.

Key or Mouse
Action for
Windows®

Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh®

Preference Operation

Ctrl+P Move to previous line.

Ctrl+N Move to next line.

Ctrl+Home None Cmd+Home Move to top of file.

Ctrl+End None Cmd+End Move to end of file.

Ctrl+
None Home Scroll up without moving cursor

position (with cell mode disabled).

Move to top of current cell or top of
previous cell (with cell mode enabled).

Ctrl+
None End Scroll down without moving cursor

position (with cell mode disabled).

Move to top of next cell (with cell
mode enabled).

Page Down Ctrl+V Page Down Move down one screen.

Page Up Alt+V Page Up Move up one screen.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+ None Option+ Move left one word.

Ctrl+ None Option+ Move right one word.

6-70

Keyboard Shortcuts in the Editor

Key or Mouse
Action for
Windows®

Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh®

Preference Operation

Home Ctrl+A Cmd+ Move to beginning of line.

End Ctrl+E Cmd+ Move to end of line.

Delete Ctrl+D Forward Delete Delete character after cursor.

Backspace none Delete Delete character before cursor.

None Ctrl+K None Cut contents (kill) to end of line.

Double-click None Double-click Select current word. To select
additional words, hold mouse after
second click and continue dragging
left or right.

Triple-click None Triple-click Select current line. To select
additional lines, hold mouse after
second click and continue dragging
up or down.

Ctrl+Shift+ None Option+Shift+ Select word to the left

Ctrl+Shift+ None Option+Shift+ Select word to the right.

Shift+Home None Cmd+Shift+ Select to beginning of line.

Shift+End None Cmd+Shift+ Select to end of line.

Shift+Page Up Ctrl+Shift+V Shift+Page Up Select one screen up.

Shift+Page
Down

Alt+Shift+V Shift+Page Down Select one screen down.

Ctrl+Shift+Home None Cmd+Shift+Home Select to top of file.

Ctrl+Shift+End None Cmd+Shift+End Select to end of file.

Shift+Enter None Shift+Enter Add a new line that is not indented.

6-71

6 Editing and Debugging M-Files

Key or Mouse
Action for
Windows®

Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh®

Preference Operation

Insert None None Change to overwrite mode from insert
mode, or change to insert mode from
overwrite mode. View current mode
in the status bar: OVR is gray for
insert mode. In overwrite mode,
what you type replaces existing text,
and the cursor is a wide block. (Not
supported on Macintosh platforms.)

Shift+F5 None Shift+F5 Exit debug mode. Equivalent to
typing dbquit. The Command
Window displays the standard
prompt >>.

6-72

Saving, Printing, and Closing Files in the Editor

Saving, Printing, and Closing Files in the Editor

In this section...

“Saving Files” on page 6-73

“Printing M-Files” on page 6-75

“Closing M-Files” on page 6-75

Saving Files
After making changes to a file, an asterisk (*) follows the file name in the title
bar of the Editor. This indicates there are unsaved changes to the file.

To save the changes, use one of the Save commands in the File menu:

• Save — Saves the file using its existing name. If the file is newly created,
the Save file as dialog box opens, where you assign a name to the file
before saving it. Another way to save is by clicking the Save button on
the toolbar. If the file has not been changed, Save appears dimmed, but you
can instead use Save As from the File menu to save to a different file name.

• Save As — The Save file as dialog box opens, where you assign a name to
the file and save it. By default, if you do not type an extension, MATLAB®

software automatically assigns the .m extension to the file name. If you do
not want an extension, type a . (period) after the file name.

• Save All — Saves all open files to their existing file names. For all newly
created files, the Save file as dialog box opens, where you assign a name
to each untitled file and save it. Another way to save all open files is by
clicking the Save All button . This button is not on the toolbar by default,
however. For information on adding it, see “Toolbars Preferences for the
MATLAB® Desktop and Editor” on page 2-87.

You cannot save an M-file while in debug mode. If you try to, MATLAB
desktop displays a dialog box asking if you want to exit debug mode and then
save the file. While debugging, you can execute sections of an M-file even
though there are unsaved changes—see “Running Sections in M-Files That
Have Unsaved Changes” on page 6-139.

6-73

6 Editing and Debugging M-Files

Recommendations on Saving Files
The MathWorks™ recommends that you save M-files you create and
M-files from The MathWorks that you edit to a directory that is not
in the matlabroot/toolbox directory tree. If you keep your files in
matlabroot/toolbox directories, they can be overwritten when you install a
new version of MATLAB software.

Be aware that locations of files in the matlabroot/toolbox directory tree are
loaded and cached in memory at the beginning of each MATLAB session to
improve performance. Therefore, if you save files to matlabroot/toolbox
directories using an external editor, or add or remove files from these
directories using file system operations, run rehash toolbox before you
use the files in the current session. If you make changes to existing files
in matlabroot/toolbox directories using an external editor, run clear
functionname before you use these files in the current session. For more
information, see rehash or “Toolbox Path Caching in the MATLAB® Program”
on page 1-25.

Autosave
As you make changes to a file in the Editor, every 5 minutes the Editor
automatically saves a copy of the file to a file of the same name but with an
.asv extension. The autosave copy is useful if you have system problems and
lose changes made to your file. In that event, you can open the autosave
version, filename.asv, and then save it as filename.m to use the last good
version of filename. For example, if you edit filename.m and do not save
it for five minutes, MATLAB saves the file including the unsaved changes,
to filename.asv.

Use autosave preferences to turn the autosave feature off or on, to
specify the number of minutes between automatic saves, and to specify
the file extension and location for autosave files. For details, select
File > Preferences > Editor/Debugger > Autosave, and then click Help.

If the file you are editing is in a read-only directory and the autosave
preference for location is the source file directory, an autosave copy of the
file is not made.

6-74

Saving, Printing, and Closing Files in the Editor

Deleting Autosave Files. By default, autosave files are not automatically
deleted when you delete the source file. To keep autosave to M-file
relationships clear and current, it is a good practice when you rename or
remove an M-file to delete or rename its corresponding autosave file.

There is a preference to Automatically delete autosave files. With
this preference selected, when you close an M-file in the Editor, MATLAB
automatically deletes the corresponding autosave file.

Accessing Your Source Control System
If you use a source control system for M-files, you can access it from within
the Editor using File > Source Control. For more information, see Chapter
10, “Source Control Interface”.

Printing M-Files
To print an entire M-file, select File > Print, or click the Print button on
the toolbar. To print the current selection, select File > Print Selection.
Complete the standard print dialog box that appears.

Specify printing options for the Editor by selecting File > Page Setup. For
example, you can specify printing with a header. For more information, see
“Printing and Page Setup Options for Desktop Tools” on page 2-53.

Closing M-Files
To close the current M-file, select Close file name from the File menu, or
click the Close box in the Editor menu bar. This is different from the Close box
in the titlebar of the Editor, which closes all open files in that Editor window.

Close box for
Editor/Debugger.

Closes all open files in this
Editor/Debugger window.

Close box for
current file.

6-75

6 Editing and Debugging M-Files

To close all files within the Editor, select Window > Close Editor
Documents. This does not close any files undocked from the Editor. The
Editor remains open with no files in it.

If each file is open in a separate window, close all the files at once using the
Close All Documents item in the Window menu. Note that this also closes
desktop documents of all types, including Variable Editor documents.

When you close a file that has unsaved changes, you are prompted to save
the file. If you do not want to be prompted, hold Ctrl and click the Close
box. The prompt will not appear and the document will close without saving
any unsaved changes.

6-76

Running M-Files in the Editor

Running M-Files in the Editor

In this section...

“Running M-Files with No Input Arguments in the Editor” on page 6-77

“Using Run Configurations to Run M-Files with Input Arguments in the
Editor” on page 6-78

“Create and Use a Run Configuration for an M-File” on page 6-78

“Create and Execute Multiple Run Configurations for an M-File” on page
6-84

“About the run_configurations.m File” on page 6-88

“Find Configurations” on page 6-88

“Remove Configurations” on page 6-91

“Reassociate and Rename Configurations” on page 6-92

“Other Ways to Run M-Files from the Editor” on page 6-96

Running M-Files with No Input Arguments in the
Editor
In the Editor, to run a script M-file, or a function M-file that requires no input
arguments, click the Run button on the toolbar. The button’s ToolTip
includes the name of the file to be run, which is useful when you have multiple
files open. Alternatively, select Debug > Run file name.

If the file is neither in a directory on the search path nor in the current
directory, a dialog box appears with options that allow you to run the file. You
can either change the current directory to the directory containing the file, or
you can add the directory containing the file to the search path.

If the file has unsaved changes, running it from the Editor automatically
saves the changes before running. In that event, the Debug menu item is
Save File and Run file name.

If the M-file is a script, you can view the value of a variable in the file, which
is called a data tip (like a ToolTip for data). You need to set the preference
to show data tips in edit mode—select File > Preferences > Display, and

6-77

6 Editing and Debugging M-Files

for General Display Options, select the check box for Enable datatips in
edit mode.

Using Run Configurations to Run M-Files with Input
Arguments in the Editor
In the Editor, you can provide values for a function’s input arguments using
a run configuration, and then run that configuration to use the assigned
values. When you are editing a function M-file, use a run configuration as an
alternative to running the function in the MATLAB® Command Window. You
can associate multiple run configurations with an M-file to assign different
input values. MATLAB saves the run configurations between sessions to a
file named run_configurations.m. (See “About the run_configurations.m
File” on page 6-88 for details.)

Consider the function collatzplot_new.m, which computes and plots the
Collatz sequence for any given positive integer. This function requires
you to specify the integer as an input value. You cannot simply run
collatplot_new.m in the Editor because the input value is not defined. One
way to specify the input value is to run the M-file in the Command Window.
Run configurations allow you to run collatzplot_new(specific value)
in the Editor.

You can also use run configurations to provide preparatory or setup
information before running an M-file, whether it takes input arguments or
not.

Note M-File run configurations use the base MATLAB workspace. Therefore,
a value that you assign to a variable in an M-file run configuration overwrites
the value for that variable (assuming it currently exists) in the base
workspace.

Create and Use a Run Configuration for an M-File
Follow these steps to create and use a run configuration for an M-file in
the Editor. These steps specify Editor toolbar buttons, but you can also use
equivalent options in the Debug menu.

6-78

Running M-Files in the Editor

1 Open the file you want to run in the Editor. For example, open
collatzplot_new.m by running the following command:

edit(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','collatzplot_new'))

To work with collatzplot_new.m on your system, save the file to a
directory for which you have write permission. In the example, the file is
saved to I:\my_matlab_files\my_mfiles\collatzplot_new.m.

2 Click the down arrow on the Run button in the Editor toolbar,

and then select Edit Run Configurations for file-name, where
file-name in this example is collatzplot_new.m.

6-79

6 Editing and Debugging M-Files

The Edit M-File Configurations dialog box opens, with a default run
configuration template for collatzplot_new.m.

6-80

Running M-Files in the Editor

3 In the MATLAB expression area of the dialog box, enter MATLAB
statements that you want to run. Delete the existing comments or replace
them with comments relevant to your run configuration. To undo and redo,
use the keyboard shortcuts for your platform, such as Ctrl+Z and Ctrl+Y
for Microsoft®Windows® platforms.

In this example, set m equal to 3, which is a small value useful for debugging
purposes. Complete the statement to run collatzplot_new(m).

6-81

6 Editing and Debugging M-Files

The MATLAB expression area provides syntax highlighting and shows
M-Lint messages, similar to the Editor.

4 To ensure your run configuration executes as expected, click Run to
execute the statements in the MATLAB expression field. In this example,
collatzplot_new(3) runs, and a Figure window displays the plot.

6-82

Running M-Files in the Editor

5 You can modify the statements in the MATLAB expression area of
the dialog box and click Run to see the results of the changes. You
can also modify the M-file and save the changes while the Edit M-File
Configurations dialog box is open, and then click Run to see the results
of the M-file changes.

6 You can assign a name using the Run configuration name field in the
Edit M-File Configurations dialog box. By default, the run configuration
name is the M-file name. If you expect to create multiple run configurations
for an M-file, assign each a name that helps you identify the configuration.
In this example, name the run configuration collatzplot_new_test.

MATLAB automatically saves the run configuration and its association
with the M-file in the run_configurations.m file in your preferences
directory.

For more information, see “About the run_configurations.m File” on page
6-88.

7 To close the Edit M-File Configurations dialog box, click Close.

8 After creating a run configuration, you can view and use the configuration
without opening the Edit M-File Configurations dialog box.

In the Editor toolbar, click the down arrow on the Run button and
position the pointer on a run configuration name. The MATLAB desktop
displays a ToolTip showing the run configuration’s MATLAB Expression
so you can see what will run.

6-83

6 Editing and Debugging M-Files

9 To use the run configuration, select the run configuration name. MATLAB
runs the expression you specified in the run configuration. For example,
select collatzplot_new_test, and MATLAB runs collatzplot_new(3),
as specified in step 3. You can modify the M-file, save it, and execute the
run configuration from the toolbar to see the effects of the M-file changes.

Create and Execute Multiple Run Configurations for
an M-File
You can create multiple run configurations for a given M-file, allowing you to
run with different values for input arguments, each for a different purpose.
Create a named run configuration for each purpose, all associated with
the M-file. Then any time you open the M-file, choose and execute the run
configuration you want. For example, for collatzplot_new(m) you might use
three values for m and have three run configurations:

6-84

Running M-Files in the Editor

• Small value, for example, 3, for debugging and testing

• Realistic value, for example, 200 or more, for a specific project

• Random value to observe changes

1 Open the Edit M-File Configurations dialog box, and then do the following:

a Select the M-file to which you want to add a run configuration, or select
a configuration associated with that M-file.

b Click the Add button (under the list of M-files and configurations),
and then click Run Configuration.

MATLAB creates a new default run configuration template, in this
example, collatzplot_new.

The example shows collatzplot_new and its default expression,
as well as one previously created run configuration associated with
collatzplot_new.m, collatzplot_new_test.

6-85

6 Editing and Debugging M-Files

2 In the Edit M-File Configurations dialog box, modify, run, and name
the new run configurations as you did for the initial run configuration,
collatplot_new_test, as described in “Create and Use a Run
Configuration for an M-File” on page 6-78.

For example, rename collatzplot_new to collatzplot_new_largevalue,
and replace the default template expression with:

m=200;
collatzplot_new(m)

To create another run configuration, click the Add button again,
and then click Run Configuration. Rename collatzplot_new_2 to
collatzplot_new_random and replace the default template expression
with:

% Random value

6-86

Running M-Files in the Editor

m=int16(rand*50);
collatzplot_new(m)
clear all

3 Select a run configuration in the listing to see and modify its expression, or
to rename the configuration. Click the expanders next to an M-file name
(+ and - icon on Windows platforms) to see or hide all the configurations
associated with that M-file.

4 To get a quick view of the expression in a configuration, position the pointer
on the name of a configuration without selecting it. In this example,
collatzplot_new_largevalue is selected and you can edit its expression
or name. The pointer is positioned on collatzplot_new_test and you
can see the statements in it.

5 To close the Edit M-File Configurations dialog box, click Close. MATLAB
saves the configurations and their associations with the M-file in the
run_configurations.m file in your preferences directory.

6-87

6 Editing and Debugging M-Files

For more information, see “About the run_configurations.m File” on page
6-88.

About the run_configurations.m File
When you create one or more run configurations using the Edit
M-File Configurations dialog box, the Editor creates or updates the
run_configurations.m file in your preferences directory (the directory
MATLAB returns when you run prefdir). This is a text file that you can view
and use to evaluate M-files.

Although you can port this file from the preferences directory on one
system to another, there can only be one run_configurations.m file on a
system. Therefore, you should only do this if you have not already created
configurations on the second system. In addition, because this file may
contain references to file paths, you need to be sure the specified M-files and
paths exist on the second system.

The MathWorks recommends that you do not update this file in the Editor
or a text editor. Changes you make using tools other than the Edit M-File
Configurations dialog box may be overwritten.

Each time you change a run configuration using the Edit M-File
Configurations dialog box, MATLAB updates the run_configurations.m
file as well as the publish_configurations.m file. See “About the
publish_configurations.m File” on page 8-99 for more information about that
file.

Find Configurations
Follow these steps to find run or publish configurations. (For information
on publish configurations, see “Producing Published Output from M-Files”
on page 8-63.)

1 Open any M-file in the Editor. For example, open the MATLAB function
sin.

2 Open the Edit M-File Configurations dialog box. MATLAB automatically
creates a default configuration for sin.m, if none exists.

6-88

Running M-Files in the Editor

In the left pane, MATLAB lists all configurations currently defined for
sin.m.

3 Click the X icon to clear the filter field.

4 In the left pane, MATLAB lists all M-files containing configurations.

5 Type a term in the filter field to find an M-file or
configuration by name.

MATLAB displays only those M-files whose names contain the term, or
whose associated configurations contain the term in their name. As you
type, MATLAB filters out files and configurations that do not contain the
term.

For example, type rand. In this example, only one M-file,
collatzplot_new.m, has a configuration that contains the term rand.

6-89

6 Editing and Debugging M-Files

6 If you cannot view the entire name of a configuration, drag the separator
bar to the right of the list, making the left pane wider.

6-90

Running M-Files in the Editor

7 To see the expression in that configuration, select the configuration, or
position the pointer over the name.

8 As you type additional letters in the filter field, fewer M-files remain in the
list of results. Use the backspace key to modify the term. If there are no
M-files or configurations containing the term, the list is empty.

Remove Configurations
If you no longer need a run or publish configuration because you do not
use it or because you deleted the M-file with which it is associated, it is
a good practice to delete the configuration. (For information on publish
configurations, see “Producing Published Output from M-Files” on page 8-63.)

1 Open any M-file in the Editor.

2 Open the Edit M-File Configurations dialog box.

3 Do one of the following in the panel on the left:

6-91

6 Editing and Debugging M-Files

• If you want to remove a single configuration, select that configuration.

• If you want to remove all the run and publish configurations for an
M-file, select the M-file

4 Click the Remove button .

5 To undo the last deletion, click the Undo button . You cannot undo the
last deletion after you close this dialog box.

Reassociate and Rename Configurations
Each run and publish configuration is associated with a specific M-file. If you
move or rename an M-file that has configurations, you need to redefine the
association. If you delete an M-file, you might want to delete the associated
configurations, or associate them with a different M-file. You might also need
to modify the statements in the configurations so they will run.

When MATLAB cannot associate a configuration with an M-file, the
Edit M-File Configurations dialog box displays the M-file name in red,
displays a File Not Found message, and allows you to find the M-file to
which you want to associate the configuration. In this example, MATLAB
cannot find the file collatzplot_new.m, which has three configurations
associated with it. For this example, collatzplot_new.m had been
renamed to collatzplot_fixed.m, so the configurations associated with
collatzplot_new.m need to be reassociated with collatzplot_fixed.m.

6-92

Running M-Files in the Editor

To reassociate a configuration:

1 In the list of configurations (left pane), select the M-file. The Associated
M-file displays the full path to the M-file that was associated with the
configurations. Click Choose.

2 In the resulting Open dialog box, navigate to and select the M-file with
which you now want to reassociate the configurations. Click Open.

In this example, you want to reassociate the configurations with
collatzplot_fixed.m; select collatzplot_fixed.m, and then click Open.

In the Edit M-File Configurations dialog box, the Associated M-file value
reflects the change you made and the File Not Found message no longer
appears.

6-93

6 Editing and Debugging M-Files

3 You might want to rename the configurations to be consistent with the
new M-file name, or at least to not reflect the former M-file name. This
is not required, but it is a good practice. To do so, select a configuration
from the list in the left pane. In the right pane, edit the value for the
configuration name. Depending on the type of configuration that you
are renaming, the field is labeled either Run configuration name or
Publish configuration name. Repeat this step for all run and publish
configurations associated with the M-file.

In this example, remove collatzplot_new from the start of each run
configuration name.

6-94

Running M-Files in the Editor

4 For an M-file name change, you might need to modify the
configuration statements to run correctly. For this example, modify
the collatzplot_new(m) statement in each configuration to use
collatzplot(m).

6-95

6 Editing and Debugging M-Files

Other Ways to Run M-Files from the Editor

• See “Running an M-File with Breakpoints” on page 6-125 for additional
information about running M-files while debugging.

• While debugging, you can execute sections of an M-file even though there
are changes. See “Running Sections in M-Files That Have Unsaved
Changes” on page 6-139.

• You can execute M-files one section at a time and quickly modify values
incrementally using the toolbar. For more information, see “Using Cells for
Rapid Code Iteration and Publishing Results” on page 6-147.

6-96

Finding Errors, Debugging, and Correcting M-Files

Finding Errors, Debugging, and Correcting M-Files
This section introduces general techniques for finding errors and using the
M-Lint automatic code analyzer to detect possible areas for improvement in
M-files. It then illustrates the MATLAB® debugger features in the Editor, as
well as equivalent Command Window debugging functions, using a simple
example.

There are two kinds of errors:

• Syntax errors — For example, misspelling a function name or omitting a
parenthesis.

• Run-time errors — These errors are usually algorithmic in nature. For
example, you might modify the wrong variable or code a calculation
incorrectly. Run-time errors are usually apparent when an M-file produces
unexpected results. Run-time errors are difficult to track down because
the function’s local workspace is lost when the error forces a return to
the MATLAB base workspace. The process of isolating and fixing these
run-time problems is referred to as debugging.

In addition to finding and fixing problems with your M-files, you might want to
improve the performance and make other enhancements using MATLAB tools.

Use the following techniques to isolate the causes of errors and improve your
M-files.

Technique or
Tool Description For More Information

Syntax
highlighting
and Delimiter
matching

Syntax highlighting helps you identify
unterminated strings in an M-file before you run
the file.

Delimiter matching helps you correctly match
pairs of parentheses, brackets, braces, and
keywords.

“Syntax Highlighting” on
page 6-28

“Matching Delimiters
(Parentheses)” on page
3-16

6-97

6 Editing and Debugging M-Files

Technique or
Tool Description For More Information

Error Messages When you run an M-file with a syntax error,
MATLAB software will most likely detect it
and display an error message in the Command
Window describing the error and showing its
line number in the M-file. Click the underlined
portion of the error message, or position the
cursor within the message and press Ctrl+Enter.
The offending M-file opens in the Editor, scrolled
to the line containing the error.

To check for syntax errors in an M-file without
running the M-file, use the pcode function.

None

M-Lint Use the M-Lint code analyzer to help you verify
the integrity of your code and learn about
potential improvements. Access M-Lint messages
automatically while you work in a file in the
Editor, or run an M-Lint report for an existing file.

To evaluate the McCabe complexity (also known
as the cyclomatic complexity) of an M-File, use
the mlint function with the -cyc option.

“M-Lint Code Analyzer”
on page 6-100 and the
reference page for the
mlint function

Editor,
Graphical
Debugger,
and MATLAB
Debugging
Functions

The MATLAB Editor, graphical debugger, and
MATLAB debugging functions are useful for
correcting run-time problems because you can
access function workspaces and examine or
change the values they contain. You can set and
clear breakpoints, indicators that temporarily
halt execution in an M-file. While stopped at a
breakpoint, you can change workspace contexts,
view the function call stack, and execute the lines
in an M-file one by one.

“Debugging Process and
Features” on page 6-117

6-98

Finding Errors, Debugging, and Correcting M-Files

Technique or
Tool Description For More Information

Other
Debugging
Techniques

• Add keyboard statements to the
M-file—keyboard statements stop M-file
execution at the point where they appear and
allow you to examine and change the function’s
local workspace. This mode is indicated by a
special K>>prompt. Resume function execution
by typing return and pressing the Enter
key. For more information, see the keyboard
reference page.

• Remove selected semicolons from the
statements in your M-file—semicolons disable
the display of output in the M-file. By removing
the semicolons, you instruct MATLAB to
display these results on your screen as the
M-file executes.

• List dependent functions—use the depfun
function to see the dependent functions.

Reference pages for
keyboard and depfun
function

Cells In the Editor, isolate sections of an M-file, called
cells, so you can easily make changes to and run a
single section.

“Using Cells for Rapid
Code Iteration and
Publishing Results” on
page 6-147

Profiler Use the Profiler to help you improve performance
and detect problems in your M-files. Access
the Profiler from the Editor by selecting
Tools > Open Profiler.

“Profiling for Improving
Performance” on page
7-27

Directory
Reports

The M-file Directory Reports help you polish and
package M-files before providing them to others
to use. Access all of these tools from the Current
Directory browser. You can access some of these
directly from the Editor Tools menu.

“Directory Reports
in Current Directory
Browser” on page 7-2

6-99

6 Editing and Debugging M-Files

M-Lint Code Analyzer

In this section...

“What Is the M-Lint code Analyzer?” on page 6-100

“Ways to Use M-Lint” on page 6-100

“M-Lint Automatic Code Analyzer in the Editor” on page 6-101

“Suppressing M-Lint Indicators and Messages” on page 6-111

“About M-Lint and Unexpected MATLAB® Termination” on page 6-116

What Is the M-Lint code Analyzer?
The M-Lint code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability.

Ways to Use M-Lint
You can use M-Lint in two different ways, both of which report the same
information:

• Run a report for an existing M-file or group of M-files. To do so, from
an M-file in the Editor, select Tools > M-Lint > Show M-Lint Report.
Make any changes to your file based on the M-Lint messages in the report.
After making changes, you must save the file and rerun the report to see
if your changes addressed the issues noted in M-Lint messages. To run
M-Lint for all files in a directory, access M-Lint from the Current Directory
browser—select View > Directory Reports > M-Lint Code Check
Report. For details, see “M-Lint Code Check Report” on page 7-16.

• Continuously check code in the Editor while you work. View M-Lint
messages and make changes to your file based on the messages. The code
analyzer updates automatically and continuously so you can see if your
changes addressed the issues noted in the M-Lint messages. For some
messages, M-Lint offers automatic code correction. For details about
specific M-Lint messages, see “M-Lint Code Check Report” on page 7-16.
Information about using the continuous checking and correction interface
in the Editor is explained here.

6-100

M-Lint Code Analyzer

M-Lint Automatic Code Analyzer in the Editor
To use the M-Lint continuous code checking in an M-file in the Editor, perform
the following steps:

1 Ensure the M-Lint messaging preference is enabled: Select
File > Preferences > M-Lint and select the Enable integrated M-Lint
warning and error messages check box. To follow these instructions, be
sure the Underlining option is set to Underline warnings and errors.

6-101

6 Editing and Debugging M-Files

2 Click OK.

3 Open an M-file in the Editor. This example uses the sample file
lengthofline.m:

6-102

M-Lint Code Analyzer

a Open the example file:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'))

b Save the example file to a directory to which you have write access. For
the example, lengthofline.m is saved to I:\MATLABFiles\mymfiles.

4 The M-Lint message indicator at the top right edge of the window conveys
the M-Lint messages reported for the file:

• Red means syntax errors were detected. Another way to detect some
of these errors is using syntax highlighting to identify unterminated
strings, and delimiter matching to identify unmatched keywords,
parentheses, braces, and brackets.

• Orange means warnings or opportunities for improvement were detected,
but no errors were detected.

• Green means no errors, warnings, or opportunities for improvement
were detected.

For the example, the indicator is red, meaning there is at least one error in
the file.

6-103

6 Editing and Debugging M-Files

M-Lint message indicator for all messages in entire file:
Red :

Orange :
Green :

Errors detected.
Warnings or improvement opportunities detected.
None detected.

Click indicator to go to next line that has an associated M-Lint message.

Current cursor position.
6-104

M-Lint Code Analyzer

5 Click the M-Lint message indicator to go to the next code fragment
containing an M-Lint message. The next code fragment is relative to the
current cursor position, viewable in the status bar.

In the lengthofline example, the first message is at line 22. The cursor
moves to the beginning of line 22.

6 The code fragment for which there is an M-Lint message is underlined in
either red for errors or orange for warnings and improvement opportunities.

To view the M-Lint message, move the pointer within the underlined
fragment. The message appears with a yellow highlighted background,
similar to data tips (see “Viewing Values as Data tips in the Editor” on
page 6-129).

Position cursor within orange underlined code fragment
and Editor/Debugger displays the related M-Link message.

6-105

6 Editing and Debugging M-Files

This message means that in line 22, nothandle is assigned a value, but
is probably not used anywhere after that in the file. The line might be
extraneous and you could delete it. But it might be that you actually
intended to use the variable, as shown in step 6 of this example.

7 Make changes to your code as needed. The M-Lint indicator and
underlining automatically update to reflect the changes you make, even
if you do not save the file.

In this example, the intention was to use nothandle as a performance
improvement by determining the value prior to the loop. Changing
~ishandle(hline(nh)) in line 24 to nothandle(nh) means there is no
longer an M-Lint message associated with line 22. For more information
about what the warning and improvement messages in this example mean
and actions you can take to address them, see “Messages and Resulting
Changes for the lengthofline Example” on page 7-21.

8 Some errors and warnings are highlighted, indicating M-Lint can
automatically fix the code. For example, in lengthofline, line 23, prod
is underlined because there is an M-Lint warning, and it is highlighted
because an automatic fix is available. When you view the M-Lint message,
it also indicates the auto-fix that is available.

6-106

M-Lint Code Analyzer

6-107

6 Editing and Debugging M-Files

Right-click the highlighted code (for a single-button mouse, use Ctrl+click).
The first item in the context menu indicates the automatic fix that M-Lint
can perform. Select it and M-Lint automatically corrects the code. In this
example, M-Lint replaces prod(size(hline)) with numel(hline).

There is a preference you can set for the color—for more information, see
“Other Colors” on page 2-86.

9 You might want to ignore certain M-Lint messages and do not want the
messages to display; for more information, see “Suppressing M-Lint
Indicators and Messages” on page 6-111.

10 You can click the M-Lint message indicator to go to the next message, or
use the other way to view messages, which is the M-Lint message bar. Each
marker in the bar represents a line that has associated M-Lint messages. A
red marker means there is an error at that line, while an orange marker
means there are warnings or suggested improvements, but no errors at
that line.

a Position the pointer at a marker in the message bar to view the message.
For example, to see an error in lengthofline, position the pointer at a

6-108

M-Lint Code Analyzer

red marker in the message bar. There is only one error in the file and
with the pointer positioned over it, the associated M-Lint messages
appears. Click the marker to go to the first code fragment in the line that
resulted in an M-Lint message. For the example, click the red marker,
which takes you to the first suspect code fragment in line 48.

temp = diff([data{1}(:) data{2}(:) data{3}(;)]);

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the
other messages might change or what you need to do might become
clearer.

M-Lint message bar.

Each marker represents
an M-Lint message.

Position the pointer at a marker to
view the message (in this example,
the only error marker in the file).

There can be multiple messages per line.

Click a marker to go to the code
fragment that resulted in the message.
In this example, the multiple messages
actually result from a single error.

b Make changes to address the problem noted in the M-Lint message—the
M-Lint indicators update automatically.

In the example, the M-Lint message suggest a delimiter imbalance. You
can check that by moving the arrow key over each of the delimiters to
see if MATLAB® software indicates a mismatch. This requires that File
> Preferences > Keyboard > Delimiter Matching has the Match on

6-109

6 Editing and Debugging M-Files

arrow key option selected. There are no mismatched delimiters. The
actual problem is the semicolon in parentheses, data{3}(;), is incorrect
and should be a colon. In line 48, change data{3}(;) to data{3}(:).
When you make the change, the underline no longer appears in line 48.
That single change addressed the issues in all of the M-Lint messages
for line 48.

Because the change you made removed the only error in the file, the
M-Lint message indicator at the top of the bar changes from red to
orange, indicating that only warnings and potential improvements
remain.

c If there are multiple messages associated with a line, there might be
multiple underlined code fragments that are adjacent, as in the above
example, making it difficult to display the message of interest. In those
cases, it might be easier to view the messages via the marker on the
message bar.

11 After making changes to address all M-Lint messages, or disabling
designated messages, the M-Lint message indicator becomes green The
example file with all M-Lint messages addressed has been saved as
lengthofline2.m, which you can open by running

open(fullfile(matlabroot,'help','techdoc',...
'matlab_env', 'examples','lengthofline2.m'))

6-110

M-Lint Code Analyzer

Suppressing M-Lint Indicators and Messages
Depending on what stage you are at in completing the M-file, you might
want to restrict the underlining, which you can do via the M-Lint preference
referred to in step 1, above. For example, when first coding, you might prefer
no underlines because they would be distracting. For details, click the Help
button in the Preferences dialog box.

M-Lint does not provide perfect information about every situation and in
some cases, you might not want to make any changes based on an M-Lint
message. In the event you do not want to change the code but you also do not
want to see the M-Lint indicator and message for that line, instruct M-Lint to
suppress them. For the lengthofline example, in line 49, the first M-Lint
message is Terminate statement with semicolon to suppress output
(in functions). Adding a semicolon to the end of a statement suppresses
output and is a common practice. M-Lint alerts you to lines that produce
output but lack the terminating semicolon. If you want to view output from
line 49, do not add the semicolon as M-Lint suggests.

6-111

6 Editing and Debugging M-Files

There are a few different ways to suppress the M-Lint indicators and
messages:

• “Ignore Only a Specific Instance” on page 6-112

• “Disable All Instances in All Files” on page 6-114

• “Disable Specified Messages or in Selected Files as Needed” on page 6-114

Note that you cannot suppress M-Lint error messages such as syntax errors,
and therefore, the following options do not apply.

Ignore Only a Specific Instance
Right-click at the M-Lint underline (for a single-button mouse, use
Ctrl+click). From the context menu, select Ignore this "Terminate
statement with semicolon...". M-Lint adds a %#ok<NOPRT> to the end of
the line, which instructs MATLAB not to check for a terminating semicolon at
that line. M-Lint removes the underline and mark in the M-Lint indicator
bar for that message.

If there are two messages on a line that you do not want M-Lint to display,
right-click separately at each underline and select the appropriate entry from
the context menu. M-Lint expands the %#ok syntax. For the example, ignoring
both messages for line 49 would add %#ok<NBRAK,NOPRT>.

For more information about %#ok, see the mlint function reference page.

This method of suppressing the messages changes the M-file. If M-Lint
preferences are to set to enable this message, the specific instance of the
message suppressed in this way will not appear because the %#ok takes
precedence over the preference setting. If you later decide you want M-Lint
to check for a terminating semicolon at that line, delete the %#ok<NOPRT>
from the line.

6-112

M-Lint Code Analyzer

Right-click at an M-Lint underline and select
the option instructing M-Lint to ignore only
this instance of the message.

6-113

6 Editing and Debugging M-Files

M-Lint adds %#ok for a specific message to the
end of a line for which you specified the M-Lint
message should be suppressed.

Disable All Instances in All Files
Right-click at the M-Lint underline (for a single-button mouse, use Ctrl+click).
From the context menu, select Disable all "Terminate statement with
semicolon...". Doing so modifies the M-Lint preference setting, which
applies to all occurrences in all files, unless a line includes a %#ok for that
message. For more information about the M-Lint preference, including how
to restore MATLAB default settings, select File > Preferences > M-Lint,
and click Help.

Disable Specified Messages or in Selected Files as Needed
Use M-Lint preferences by selecting File > Preferences > M-Lint. Then
enable specific messages or categories of messages and save the settings to a

6-114

M-Lint Code Analyzer

txt file. You can reuse the settings for any M-file, or provide the settings file
to another user.

To use the saved settings, either select the settings file in M-Lint preferences,
or in the Editor. In the Editor, right-click the M-Lint message bar (for
a single-button mouse, use Ctrl+click), or select Tools > M-Lint. The
currently-selected setting choice is shown, preceded by a bullet point. You can
choose from any of the settings files, such as the MLintNoSemis example, as
shown here.

M-Lint default settings are currently selected (as indicated
by the bullet point preceding that menu item).

Select any text file to use the M-Lint settings specified in that file.

For more information about M-Lint settings and preferences, click Help in
the M-Lint preferences panel.

6-115

6 Editing and Debugging M-Files

About M-Lint and Unexpected MATLAB® Termination
Under some circumstances, when you are editing an M-file, M-Lint can cause
the MATLAB session to terminate unexpectedly. The next time you start
MATLAB, it displays the following message and disables M-Lint for the M-file
that was open in the editor when MATLAB terminated.

M-Lint caused your previous MATLAB session to terminate unexpectedly.
Please send this message and file name
to The MathWorks. See "About M-Lint and Unexpected MATLAB Termination"
in the MATLAB documentation for details.

If you want, while waiting for a response from The MathWorks™, you can
attempt to reenable M-Lint for the file by following these steps:

1 In the Editor, reopen the file that you were editing when MATLAB
terminated.

2 Remove the lines of code that you believe M-Lint could not handle.

3 In a text editor, open the MLintFailureFiles file in your preferences
directory. (This is the directory that MATLAB returns when you run
prefdir.)

4 Save and reopen the M-file.

6-116

Debugging Process and Features

Debugging Process and Features

In this section...

“Ways to Debug M-Files” on page 6-117

“Preparing for Debugging” on page 6-117

“Setting Breakpoints” on page 6-121

“Running an M-File with Breakpoints” on page 6-125

“Stepping Through an M-File” on page 6-126

“Examining Values” on page 6-128

“Correcting Problems and Ending Debugging” on page 6-133

“Conditional Breakpoints” on page 6-140

“Breakpoints in Anonymous Functions” on page 6-142

“Error Breakpoints” on page 6-143

Ways to Debug M-Files
You can debug the M-files using the Editor, which is a graphical user interface,
as well as by using debugging functions from the Command Window. You can
use both methods interchangeably. These topics and the example describe
both methods.

Preparing for Debugging
Do the following to prepare for debugging:

• Open the file — To use the Editor for debugging, open it with the file to run.

• Save changes — If you are editing the file, save the changes before you begin
debugging. If you try to run a file with unsaved changes from within the
Editor, the file is automatically saved before it runs. If you run a file with
unsaved changes from the Command Window, MATLAB® software runs the
saved version of the file, so you will not see the results of your changes.

• Add the files to a directory on the search path or put them in the current
directory — Be sure the file you run and any files it calls are in directories

6-117

6 Editing and Debugging M-Files

that are on the search path. If all files to be used are in the same directory,
you can instead make that directory be the current directory.

Debugging Example — The Collatz Problem
The debugging process and features are best described via an example.
To prepare to use the example, create two M-files, collatz.m and
collatzplot.m, that produce data for the Collatz problem.

For any given positive integer, n, the Collatz function produces a sequence of
numbers that always resolves to 1. If n is even, divide it by 2 to get the next
integer in the sequence. If n is odd, multiply it by 3 and add 1 to get the next
integer in the sequence. Repeat the steps until the next integer is 1. The
number of integers in the sequence varies, depending on the starting value, n.

The Collatz problem is to prove that the Collatz function will resolve to 1 for
all positive integers. The M-files for this example are useful for studying
the Collatz problem. The file collatz.m generates the sequence of integers
for any given n. The file collatzplot.m calculates the number of integers
in the sequence for all integers from 1 through m, and plots the results. The
plot shows patterns that can be further studied.

Following are the results when n is 1, 2, or 3.

n Sequence
Number of Integers in the
Sequence

1 1 1

2 2 1 2

3 3 10 5 16 8 4 2 1 8

M-Files for the Collatz Problem. Following are the two M-files you use for
the debugging example. To create these files on your system, open two new
M-files. Select and copy the following code from the Help browser and paste
it into the M-files. Save and name the files collatz.m and collatzplot.m.
Save them to your current directory or add the directory where you save them
to the search path. One of the files has an embedded error to illustrate the
debugging features.

6-118

Debugging Process and Features

Code for collatz.m.

function sequence=collatz(n)

% Collatz problem. Generate a sequence of integers resolving to 1

% For any positive integer, n:

% Divide n by 2 if n is even

% Multiply n by 3 and add 1 if n is odd

% Repeat for the result

% Continue until the result is 1%

sequence = n;

next_value = n;

while next_value > 1

if rem(next_value,2)==0

next_value = next_value/2;

else

next_value = 3*next_value+1;

end

sequence = [sequence, next_value];

end

Code for collatzplot.m.

function collatzplot(m)
% Plot length of sequence for Collatz problem
% Prepare figure
clf
set(gcf,'DoubleBuffer','on')
set(gca,'XScale','linear')
%
% Determine and plot sequence and sequence length
for N = 1:m
plot_seq = collatz(N);
seq_length(N) = length(plot_seq);
line(N,plot_seq,'Marker','.','MarkerSize',9,'Color','blue')
drawnow

end

Trial Run for Example. Open the file collatzplot.m. Make sure the
current directory is the directory in which you saved collatzplot.

6-119

6 Editing and Debugging M-Files

Try out collatzplot to see if it works correctly. Use a simple input value,
for example, 3, and compare the results to those shown in the preceding
table. Typing

collatzplot(3)

produces the plot shown in the following figure.

The plot for n = 1 appears to be correct—for 1, the Collatz series is 1, and
contains one integer. But for n = 2 and n = 3, it is wrong because there should
be only one value plotted for each integer, the number of integers in the
sequence, which the preceding table shows to be 2 (for n = 2) and 8 (for n
= 3). Instead, multiple values are plotted. Use MATLAB debugging features
to isolate the problem.

6-120

Debugging Process and Features

Setting Breakpoints
Set breakpoints to pause execution of the M-file so you can examine values
where you think the problem might be. You can set breakpoints in the Editor,
using functions in the Command Window, or both.

There are three basic types of breakpoints you can set in M-files:

• A standard breakpoint, which stops at a specified line in an M-file. For
details, see “Setting Standard Breakpoints” on page 6-122.

• A conditional breakpoint, which stops at a specified line in an M-file only
under specified conditions. For details, see “Conditional Breakpoints” on
page 6-140.

• An error breakpoint that stops in any M-file when it produces the specified
type of warning, error, or NaN or infinite value. For details, see “Error
Breakpoints” on page 6-143.

You can disable standard and conditional breakpoints so that MATLAB
temporarily ignores them, or you can remove them. For details, see “Disabling
and Clearing Breakpoints” on page 6-134. Breakpoints are not maintained
after you exit the MATLAB session.

You can only set valid standard and conditional breakpoints at executable
lines in saved files that are in the current directory or in directories on the
search path. When you add or remove a breakpoint in a file that is not in a
directory on the search path or in the current directory, a dialog box appears,
presenting you with options that allow you to add or remove the breakpoint.
You can either change the current directory to the directory containing the
file, or you can add the directory containing the file to the search path.

Do not set a breakpoint at a for statement if you want to examine values at
increments in the loop. For example, in

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient. Therefore,
when you set a breakpoint at the for statement and step through the file, you

6-121

6 Editing and Debugging M-Files

only stop at the for statement once. Instead place the breakpoint at the next
line, m=n+1 to stop at each pass through the loop.

You cannot set breakpoints while MATLAB is busy, for example, running an
M-file, unless that M-file is paused at a breakpoint.

Setting Standard Breakpoints
To set a standard breakpoint using the Editor, click in the breakpoint alley at
the line where you want to set the breakpoint. The breakpoint alley is the
narrow column on the left side of the Editor, just right of the line number.
Set breakpoints at lines that are preceded by a - (dash). Lines not preceded
by a dash, such as comments or blank lines, are not executable—if you try
to set a breakpoint there, it is actually set at the next executable line. Other
ways to set a breakpoint are to position the cursor in the line and then
click the Set/Clear Breakpoint button on the toolbar, or select Set/Clear
Breakpoint from the Debug menu or the context menu. A breakpoint icon
appears.

Set Breakpoints for the Example. It is unclear whether the problem in
the example is in collatzplot or collatz. To start, set breakpoints in
collatzplot.m at lines 10, 11, and 12. The breakpoint at line 10 allows you
to step into collatz to see if the problem might be there. The breakpoints at
lines 11 and 12 stop the program where you can examine the interim results.

6-122

Debugging Process and Features

Click where there
is a dash (-) to set a
breakpoint at that line.

The red icon
indicates a valid
breakpoint is set.

Valid (Red) and Invalid (Gray) Breakpoints. Red breakpoints are valid
standard breakpoints. If breakpoints are instead gray, they are not valid.

6-123

6 Editing and Debugging M-Files

When breakpoints
are gray, they are not
valid.

In this example, it is
because the file has
not been saved since
changes were made
to it.

Save the file to make
the breakpoints valid
(red).

Breakpoints are gray for either of these reasons:

• The file has not been saved since changes were made to it. Save the file
to make breakpoints valid. The gray breakpoints become red, indicating
they are now valid. Any gray breakpoints that were entered at invalid
breakpoint lines automatically move to the next valid breakpoint line with
the successful file save.

• There is a syntax error in the file. When you set a breakpoint, an error
message appears indicating where the syntax error is. Fix the syntax error
and save the file to make breakpoints valid.

Function Alternative for Setting Breakpoints
To set a breakpoint using the debugging functions, use dbstop. For the
example, type

dbstop in collatzplot at 10
dbstop in collatzplot at 11
dbstop in collatzplot at 12

6-124

Debugging Process and Features

Some useful related functions are

• dbtype — Lists the M-file with line numbers in the Command Window.

• dbstatus — Lists breakpoints.

Running an M-File with Breakpoints
After setting breakpoints, run the M-file from the Command Window or the
Editor.

Running the Example
For the example, run collatzplot for the simple input value, 3, by typing in
the Command Window

collatzplot(3)

The example, collatzplot, requires an input argument and therefore runs
only from the Command Window and not from the Editor.

Results of Running an M-File Containing Breakpoints
Running the M-file results in the following:

• The prompt in the Command Window changes to

K>>

indicating that MATLAB is in debug mode.

• The program pauses at the first breakpoint. This means that line will be
executed when you continue. The pause is indicated in the Editor by the
green arrow just to the right of the breakpoint, which in the example, is
line 10 of collatzplot as shown here.

If you use debugging functions from the Command Window, the line at
which you are paused is displayed in the Command Window. For the
example, it would show

6-125

6 Editing and Debugging M-Files

10 plot_seq = collatz(N);

• The function displayed in the Stack field on the toolbar changes to
reflect the current function (sometimes referred to as the caller or calling
workspace). The call stack includes subfunctions as well as called functions.
If you use debugging functions from the Command Window, use dbstack to
view the current call stack.

• If the file you are running is not in the current directory or a directory on
the search path, you are prompted to either add the directory to the path or
change the current directory.

In debug mode, you can set breakpoints, step through programs, examine
variables, and run other functions.

Note that MATLAB software could become nonresponsive if it stops at a
breakpoint while displaying a modal dialog box or figure that your M-file
creates. In that event, use Ctrl+C to go the MATLAB prompt.

Stepping Through an M-File
While debugging, you can step through an M-file, pausing at points where
you want to examine values.

Use the step buttons or the step items in the Debug menu of the Editor or
desktop, or use the equivalent functions.

6-126

Debugging Process and Features

Toolbar Button
Debug Menu
Item Description

Function
Alternative

Run m-file or
Run Publish
Configuration
for m-file

Commence execution of M-file
and run until completion
or until a breakpoint is
encountered. The Run Publish
Configurations for M-file
menu item provides a submenu
that enables you to select a
particular run configuration or
to edit the run configurations
for the M-file. If you choose
Run M-file, the default run
configuration is used.

None

None Go Until
Cursor

Continue execution of M-file
until the line where the cursor
is positioned. Also available on
the context menu.

None

Step Execute the current line of the
M-file.

dbstep

Step In Execute the current line of the
M-file and, if the line is a call to
another function, step into that
function.

dbstep in

Continue Resume execution of M-file until
completion or until another
breakpoint is encountered.

dbcont

Step Out After stepping in, run the
rest of the called function or
subfunction, leave the called
function, and pause.

dbstep out

Continue Running in the Example
In the example, collatzplot is paused at line 10. Because the problem
results are correct for N/n = 1, continue running until N/n = 2. Press the

6-127

6 Editing and Debugging M-Files

Continue button three times to move through the breakpoints at lines 10, 11,
and 12. Now the program is again paused at the breakpoint at line 10.

Stepping In to Called Function in the Example
Now that collatzplot is paused at line 10 during the second iteration, use
the Step In button or type dbstep in in the Command Window to step into
collatz and walk through that M-file. Stepping into line 10 of collatzplot
goes to line 9 of collatz. If collatz is not open in the Editor, it automatically
opens if you have selected Debug > Open M-Files When Debugging.

The pause indicator at line 10 of collatzplot changes to a hollow arrow ,
indicating that MATLAB control is now in a subfunction called from the main
program. The call stack shows that the current function is now collatz.

In the called function, collatz in the example, you can do the same things
you can do in the main (calling) function—set breakpoints, run, step through,
and examine values.

Examining Values
While the program is paused, you can view the value of any variable currently
in the workspace. Examine values when you want to see whether a line of
code has produced the expected result or not. If the result is as expected,
continue running or step to the next line. If the result is not as expected, then
that line, or a previous line, contains an error. Use the following methods to
examine values:

• “Selecting the Workspace” on page 6-129

• “Viewing Values as Data tips in the Editor” on page 6-129

• “Viewing Values in the Command Window” on page 6-130

• “Viewing Values in the Workspace Browser and Variable Editor” on page
6-131

• “Evaluating a Selection” on page 6-132

• “Examining Values in the Example” on page 6-132

Many of these methods are used in “Examining Values in the Example” on
page 6-132.

6-128

Debugging Process and Features

Selecting the Workspace
Variables assigned through the Command Window and created using scripts
are considered to be in the base workspace. Variables created in a function
belong to their own function workspace. To examine a variable, you must
first select its workspace. When you run a program, the current workspace
is shown in the Stack field. To examine values that are part of another
workspace for a currently running function or for the base workspace, first
select that workspace from the list in the Stack field.

If you use debugging functions from the Command Window, use dbstack
to display the call stack. Use dbup and dbdown to change to a different
workspace. Use who or whos to list the variables in the current workspace.

Workspace in the Example. At line 10 of collatzplot, you stepped in,
so the current line is 9 in collatz. The Stack shows that collatz is the
current workspace.

Viewing Values as Data tips in the Editor
In the Editor, position the pointer to the left of a variable. Its current value
appears—this is called a data tip, which is like a ToolTip for data. The data
tip stays in view until you move the pointer. If you have trouble getting the
data tip to appear, click in the line containing the variable and then move the
pointer next to the variable.

A related function is datatipinfo.

Data tips in the Example. Position the pointer over n in line 9 of collatz.
The data tip shows that n = 2, as expected.

6-129

6 Editing and Debugging M-Files

Hold the cursor over
a variable.

Its current value
temporarily displays
as a datatip.

Viewing Values in the Command Window
You can examine values while in debug mode at the K>> prompt. To see the
variables currently in the workspace, use who. Type a variable name in
the Command Window and it displays the variable’s current value. For the
example, to see the value of n, type

n

The Command Window displays the expected result

n =
2

and displays the debug prompt, K>>.

6-130

Debugging Process and Features

Viewing Values in the Workspace Browser and Variable Editor
You can view the value of variables in the Value column of the Workspace
browser. The Workspace browser displays all variables in the current
workspace. Use the Stack in the Workspace browser to change to another
workspace and view its variables.

The Value column does not show all details for all variables. To see details,
double-click a variable in the Workspace browser. The Variable Editor opens,
displaying the content for that variable. You can open the Variable Editor
directly for a variable using openvar.

To see the value of n in the Variable Editor for the example, type

openvar n

and the Variable Editor opens, showing that n = 2 as expected.

6-131

6 Editing and Debugging M-Files

Evaluating a Selection
Select a variable or equation in an M-file in the Editor. Right-click and select
Evaluate Selection from the context menu (for a single-button mouse,
use Ctrl+click). The Command Window displays the value of the variable
or equation. You cannot evaluate a selection while MATLAB is busy, for
example, running an M-file.

Examining Values in the Example
Step from line 9 through line 13 in collatz. Step again, and the pause
indicator jumps to line 17, just after the if loop, as expected. Step again, to
line 18, check the value of sequence in line 17 and see that the array is

2 1

as expected for n = 2. Step again, which moves the pause indicator from line
18 to line 11. At line 11, step again. Because next_value is now 1, the while
loop ends. The pause indicator is at line 11 and appears as a green down
arrow . This indicates that processing in the called function is complete and
program control will return to the calling program. Step again from line 11 in
collatz and execution is now paused at line 10 in collatzplot.

Note that instead of stepping through collatz, the called function, as was
just done in this example, you can step out from a called function back to the
calling function, which automatically runs the rest of the called function and
returns to the next line in the calling function. To step out, use the Step Out
button or type dbstep out in the Command Window.

6-132

Debugging Process and Features

In collatzplot, step again to advance to line 11, then line 12. The variable
seq_length in line 11 is a vector with the elements

1 2

which is correct.

Finally, step again to advance to line 13. Examining the values in line 12,
N = 2 as expected, but the second variable, plot_seq, has two values, where
only one value is expected. While the value for plot_seq is as expected

2 1

it is the incorrect variable for plotting. Instead, seq_length(N) should be
plotted.

Correcting Problems and Ending Debugging
These are some of the ways to correct problems and end the debugging session:

• “Changing Values and Checking Results” on page 6-133

• “Ending Debugging” on page 6-134

• “Disabling and Clearing Breakpoints” on page 6-134

• “Saving Breakpoints” on page 6-136

• “Correcting an M-File” on page 6-136

• “Completing the Example” on page 6-136

• “Running Sections in M-Files That Have Unsaved Changes” on page 6-139

Many of these features are used in “Completing the Example” on page 6-136.

Changing Values and Checking Results
While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the
program is paused, assign a new value to the variable in the Command
Window, Workspace browser, or Variable Editor. Then continue running or
stepping through the program. If the new value does not produce the expected
results, the program has a different problem.

6-133

6 Editing and Debugging M-Files

Ending Debugging
After identifying a problem, end the debugging session. You must end a
debugging session if you want to change and save an M-file to correct a
problem, or if you want to run other functions in MATLAB.

Note It is recommended that you quit debug mode before editing an M-file. If
you edit an M-file while in debug mode, you can get unexpected results when
you run the file. If you do edit an M-file while in debug mode, breakpoints
turn gray, indicating that results might not be reliable. See “Valid (Red) and
Invalid (Gray) Breakpoints” on page 6-123 for details.

If you attempt to save an edited M-file while in debug mode, a dialog box
appears allowing you to exit debug mode and save the file.

To end debugging, click the Exit Debug Mode button , or select Exit Debug
Mode from the Debug menu.

You can instead use the function dbquit or the Shift+F5 keyboard shortcut
to end debugging.

After quitting debugging, pause indicators in the Editor display no longer
appear, and the normal prompt >> appears in the Command Window instead
of the debugging prompt, K>>. You can no longer access the call stack.

Disabling and Clearing Breakpoints
Disable a breakpoint to temporarily ignore it. Clear a breakpoint to remove it.

Disabling and Enabling Breakpoints. You can disable selected
breakpoints so the program temporarily ignores them and runs uninterrupted,
for example, after you think you identified and corrected a problem. This is
especially useful for conditional breakpoints—see “Conditional Breakpoints”
on page 6-140.

To disable a breakpoint, right-click the breakpoint icon and select Disable
Breakpoint from the context menu, or click anywhere in a line and select
Enable/Disable Breakpoint from the Debug or context menu. You can also

6-134

Debugging Process and Features

disable a conditional breakpoint by clicking the breakpoint icon. This puts
an X through the breakpoint icon as shown here.

After disabling a breakpoint, you can enable it to make it active again, or clear
it. To enable it, right-click the breakpoint icon and select Enable Breakpoint
from the context menu, or click anywhere in a line and select Enable/Disable
Breakpoint from the Breakpoints or context menu. The X no longer
appears on the breakpoint icon and program execution will pause at that line.

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 10 has conditional expression 'false'.

Clearing (Removing) Breakpoints. All breakpoints remain in a file until
you clear (remove) them or until they are automatically cleared. Clear a
breakpoint after determining that a line of code is not causing a problem.

To clear a breakpoint in the Editor, click anywhere in a line and select
Set/Clear Breakpoint from the Debug or context menu. The breakpoint for
that line is cleared. Another way to clear a breakpoint is to click a standard
breakpoint icon, or a disabled conditional breakpoint icon.

To clear all breakpoints in all files, select Debug > Clear Breakpoints in
All Files, or click its equivalent button on the toolbar.

The function that clears breakpoints is dbclear. To clear all breakpoints, use
dbclear all. For the example, clear all of the breakpoints in collatzplot
by typing

dbclear all in collatzplot

Breakpoints are automatically cleared when you

• End the MATLAB session

• Clear the M-file using clear name or clear all

6-135

6 Editing and Debugging M-Files

Note When clear name or clear all is in a statement in an M-file that you
are debugging, it clears the breakpoints.

Saving Breakpoints
You can use the s=dbstatus syntax and then save s to save the current
breakpoints to a MAT-file. At a later time, you can load s and restore the
breakpoints using dbstop(s). For more information, including an example,
see the dbstatus reference page.

Correcting an M-File
To correct a problem in an M-file,

1 Quit debugging.

Do not make changes to an M-file while MATLAB is in debug mode. If you
do edit an M-file while in debug mode, breakpoints turn gray, indicating
that results might not be reliable. See“Valid (Red) and Invalid (Gray)
Breakpoints” on page 6-123 for details.

2 Make changes to the M-file.

3 Save the M-file.

4 Set, disable, or clear breakpoints, as appropriate.

5 Run the M-file again to be sure it produces the expected results.

Completing the Example
To correct the problem in the example, do the following:

1 End the debugging session. One way to do this is to select Exit Debug
Mode from the Debug menu.

2 In collatzplot.m line 12, change the string plot_seq to seq_length(N)
and save the file.

3 Clear the breakpoints in collatzplot.m. One way to do this is by typing

6-136

Debugging Process and Features

dbclear all in collatzplot

in the Command Window.

4 Run collatzplot for m = 3 by typing

collatzplot(3)

in the Command Window.

5 Verify the result. The figure shows that the length of the Collatz series is 1
when n = 1, 2 when n = 2, and 8 when n = 3, as expected.

6-137

6 Editing and Debugging M-Files

6 Test the function for a slightly larger value of m, such as 6, to be sure the
results are still accurate. To make it easier to verify collatzplot for m = 6
as well as the results for collatz, add this line at the end of collatz.m

sequence

which displays the series in the Command Window. The results for when
n = 6 are

sequence =

6 3 10 5 16 8 4 2 1

Then run collatzplot for m = 6 by typing

collatzplot(6)

7 To make debugging easier, you ran collatzplot for a small value of m.
Now that you know it works correctly, run collatzplot for a larger value
to produce more interesting results. Before doing so, you might want to
disable output for the line you just added in step 6, line 19 of collatz.m, by
adding a semicolon to the end of the line so it appears as

sequence;

Then run

collatzplot(500)

6-138

Debugging Process and Features

The following figure shows the lengths of the Collatz series for n = 1
through n = 500.

Running Sections in M-Files That Have Unsaved Changes
It is a good practice to make changes to an M-file after you quit debugging,
and to save the changes and then run the file. Otherwise, you might get
unexpected results. But there are situations where you might want to
experiment during debugging, to make a change to a part of the file that has
not yet run, and then run the remainder of the file without saving the change.

To do this, while stopped at a breakpoint, make a change to a part of the
file that has not yet run. Breakpoints will turn gray, indicating they are
invalid. Then select all of the code after the breakpoint, right-click, and

6-139

6 Editing and Debugging M-Files

choose Evaluate Selection from the context menu. You can also use cell
mode to do this.

Conditional Breakpoints
Set conditional breakpoints to cause MATLAB to stop at a specified line in a
file only when the specified condition is met. One particularly good use for
conditional breakpoints is when you want to examine results after a certain
number of iterations in a loop. For example, set a breakpoint at line 10 in
collatzplot, specifying that MATLAB should stop only if N is greater than or
equal to 2. This section covers the following topics:

• “Setting Conditional Breakpoints” on page 6-140

• “Copying, Modifying, Disabling, and Clearing Conditional Breakpoints” on
page 6-142

• “Function Alternative for Conditional Breakpoints” on page 6-142

Setting Conditional Breakpoints
To set a conditional breakpoint, follow these steps:

1 Click in the line where you want to set the conditional breakpoint. Then
select Set/Modify Conditional Breakpoint from the Debug or context
menu. If a standard breakpoint already exists at that line, use this same
method to make it conditional.

6-140

Debugging Process and Features

The MATLAB Editor conditional breakpoint dialog box opens as shown
in this example.

2 Type a condition in the dialog box, where a condition is any legal MATLAB
expression that returns a logical scalar value. Click OK. As noted in the
dialog box, the condition is evaluated before running the line. For the
example, at line 10 in collatzplot, enter

N>=2

as the condition. A yellow breakpoint icon (indicating the breakpoint is
conditional) appears in the breakpoint alley at that line.

Conditional breakpoint (yellow).

When you run the file, MATLAB software enters debug mode and pauses
at the line only when the condition is met. In the collatzplot example,
MATLAB runs through the for loop once and pauses on the second iteration
at line 10 when N is 2. If you continue executing, MATLAB pauses again at
line 10 on the third iteration when N is 3.

6-141

6 Editing and Debugging M-Files

Copying, Modifying, Disabling, and Clearing Conditional
Breakpoints
To copy a conditional breakpoint, right-click the icon in the breakpoint alley
and select Copy from the context menu. Then right-click in the breakpoint
alley at the line where you want to paste the conditional breakpoint and select
Paste from the context menu.

Modify the condition for the breakpoint in the current line by selecting
Set/Modify Conditional Breakpoint from the Debug or context menu.

Click a conditional breakpoint icon to disable it. Click a disabled conditional
breakpoint to clear it.

Function Alternative for Conditional Breakpoints
Use the dbstop function with appropriate arguments to set conditional
breakpoints from the Command Window, and use dbclear to clear them. Use
dbstatus to view the breakpoints currently set, including any conditions,
which are listed in the expression field. If no condition exists, the value in
the expression field is [] (empty). For details, see the function reference
pages: dbstop, dbclear, and dbstatus.

Breakpoints in Anonymous Functions
There can be multiple breakpoints in an M-file line that contains anonymous
functions. There can be a breakpoint for the line itself (MATLAB software
stops at the start of the line), as well as a breakpoint for each anonymous
function in that line. When you add a breakpoint to a line containing an
anonymous function, the Editor asks exactly where in the line you want
to add the breakpoint. If there is more than one breakpoint in a line, the
breakpoint icon is blue .

When there are multiple breakpoints set on a line, the icon is always blue,
regardless of the status of any of the breakpoints on the line. Position the
mouse on the icon and a ToolTip displays information about all breakpoints
in that line.

To perform a breakpoint action for a line that can contain multiple
breakpoints, such as Clear Breakpoint, right-click the breakpoint alley at

6-142

Debugging Process and Features

that line and select the action. MATLAB prompts you to specify the exact
breakpoint on which to act in that line.

When you set a breakpoint in an anonymous function, MATLAB stops when
the anonymous function is called. The following illustration shows the Editor
when you set a breakpoint in the anonymous function sqr in line 2, and then
run the file. MATLAB stops when it runs sqr in line 4. After you continue
execution, MATLAB stops again when it runs sqr the second time in line 4.
Note that the Stack display shows the anonymous function.

Breakpoint set in
anonymous
function sqr.

MATLAB stops
when it runs sqr.

Error Breakpoints
Set error breakpoints to stop program execution and enter debug mode when
MATLAB encounters a problem. Unlike standard and conditional breakpoints,
you do not set these breakpoints at a specific line in a specific file. Rather,
once set, MATLAB stops at any line in any file when the error condition
specified via the error breakpoint occurs. MATLAB then enters debug mode
and opens the file containing the error, with the pause indicator at the line
containing the error. Files open only when the you select Debug > Open
M-Files . Error breakpoints remain in effect until you clear them or until you
end the MATLAB session. You can set error breakpoints from the Debug
menu in any desktop tool. This section covers the following topics:

• “Setting Error Breakpoints” on page 6-144

• “Error Breakpoint Types and Options” on page 6-144

• “Function Alternative for Error Breakpoints” on page 6-146

6-143

6 Editing and Debugging M-Files

Setting Error Breakpoints
To set error breakpoints, select Debug > Stop if Errors/Warnings. In the
resulting Stop if Errors/Warnings for All Files dialog box, specify error
breakpoints on all appropriate tabs and click OK. To clear error breakpoints,
select the Never stop if ... option for all appropriate tabs and click OK.

For example, to pause execution when a warning occurs, select the Warnings
tab, and from it select Always stop if warning, then click OK. When you
run an M-file and MATLAB produces a warning, execution pauses, MATLAB
enters debug mode, and the file opens in the Editor at the line that produced
the warning. To remove the warning breakpoint, select Never stop if
warning in the Warnings tab and click OK.

Error Breakpoint Types and Options
The four basic types of error breakpoints you can set are Errors, Try/Catch
Errors, Warnings, and NaN or Inf. Select the Always stop if ... option for
each tab to set that type of breakpoint. Select the Use message identifiers
... option to limit each type of error breakpoint (except NaN or Inf) so that
execution stops only for specific errors.

6-144

Debugging Process and Features

Errors. When an error occurs, execution stops, unless the error is in a
try...catch block. MATLAB enters debug mode and opens the M-file to
the line in the try portion of the block that produced the error. You cannot
resume execution.

Try/Catch Errors. When an error occurs in a try...catch block, execution
pauses. MATLAB enters debug mode and opens the M-file to the line that
produced the error. You can resume execution or use debugging features.

Warnings. When a warning is produced, MATLAB pauses, enters debug
mode, and opens the M-file, paused at the line that produced the warning.
You can resume execution or use debugging features.

NaN or Inf. When an operator, function call, or scalar assignment produces
a NaN (not-a-number) or Inf (infinite) value, MATLAB pauses, enters
debug mode, and opens the M-file, paused immediately after the line that
encountered the value. You can resume execution or use debugging features.

Use Message Identifiers. Execution stops only when MATLAB encounters
one of the specified errors. This option is not available for the NaN or Inf
type of error breakpoint. To use this feature:

1 Select the Errors, Try/Catch Errors, or Warnings tab.

2 Select the Use Message Identifiers option.

3 Click Add.

4 In the resulting Add Message Identifier dialog box, supply the message
identifier of the specific error you want to stop for, where the identifier is
of the form component:message, and click OK.

5 The message identifier you added appears in the Stop If Errors/Warnings
for All Files dialog box, where you click OK.

You can add multiple message identifiers, and edit or remove them.

One way to obtain an error message identifier generated by a MATLAB
function for example, is to produce the error, and then run the lasterror
function. MATLAB returns the error message and identifier. Copy the
identifier from the Command Window output and paste it into the Add

6-145

6 Editing and Debugging M-Files

Message Identifier dialog box. An example of an error message identifier
is MATLAB:UndefinedFunction. Similarly, to obtain a warning message
identifier, produce the warning and then run [m,id] = lastwarn; MATLAB
returns the last warning identifier to id. An example of a warning message
identifier is MATLAB:divideByZero.

Function Alternative for Error Breakpoints
The function equivalent for each option appears in the Stop if
Errors/Warnings for All Files dialog box. For example, the function
equivalent for Always stop if error is dbstop if error. Use the dbstop
function with appropriate arguments to set error breakpoints from the
Command Window, and use dbclear to clear them. Use dbstatus to view the
error breakpoints currently set. Error breakpoints are listed in the cond field
and message identifiers for breakpoints are listed in the identifier field of
the dbstatus output.

6-146

Using Cells for Rapid Code Iteration and Publishing Results

Using Cells for Rapid Code Iteration and Publishing Results

In this section...

“What Are Cells?” on page 6-147

“Rapid Code Iteration Overview” on page 6-147

“Understanding and Defining Cells” on page 6-149

“Understanding Nested Cells” on page 6-155

“Navigating and Evaluating with Cells” on page 6-164

What Are Cells?
M-files often have a natural structure consisting of multiple sections.
Especially for larger files, you typically focus efforts on a single section at a
time, working with the code in just that section. Similarly, when conveying
information about your M-files to others, often you describe the sections of the
code. To facilitate these processes, use M-file cells, where cell means a section
of code. Specifically, MATLAB® software uses cells for:

• Rapid code iteration in the Editor — This makes the experimental phase
of your work with M-file scripts easier. The next section, “Rapid Code
Iteration Overview” on page 6-147, outlines the process, and is followed by
details for defining, evaluating, and modifying values in cells.

• Publishing M-files — This allows you to include code and results in a
presentation format such as HTML. Publishing using cells also requires
you to understand and define cells. You can make use of the cell navigation
and evaluation features you specify for rapid code iteration or define and
use cells explicitly for publishing. See Chapter 8, “Publishing M-Files”
for complete details.

Rapid Code Iteration Overview
When working with an M-file, you often experiment with your code—modifying
it, testing it, and updating it—until you have an M-file that does what you
want. Use the MATLAB Editor cell features with M-file scripts to facilitate
this process. You can also use cell features with function M-files, but there are
some restrictions—see “Using Cells in Function M-Files” on page 6-166.

6-147

6 Editing and Debugging M-Files

If you have an active Internet connection, you can watch the Rapid Code
Iteration Using Cells video demo for an overview of the major functionality.

This is the overall process of using cells for rapid code iteration:

1 In the MATLAB Editor, enable cell mode by selecting Cell > Enable
Cell Mode. Items in the Cell menu become selectable. The cell toolbar
appears, unless you had previously hidden it. With cell mode enabled, hide
or show the toolbar by right-clicking in the Editor menu bar or toolbars and
selecting Cell Toolbar from the context menu.

2 Define the boundaries of the cells in an M-file script using cell features.
Cells are denoted by a specialized comment syntax, %%. For details, see
“Understanding and Defining Cells” on page 6-149.

3 Once you define the cells, use cell features to navigate quickly from cell to
cell in your file, evaluate the code in a cell in the base workspace, and view
the results. To facilitate experimentation, use cell features to modify values
in cells and then reevaluate them, to see how different values impact the
result. For details, see “Navigating and Evaluating with Cells” on page
6-164.

6-148

Using Cells for Rapid Code Iteration and Publishing Results

Current cell is
highlighted.

Cell toolbar.

Cell features.

Use display
preference to
show horizontal
lines between
cells.

Understanding and Defining Cells
A cell contains the contiguous lines of code that you want to evaluate as a
whole in an M-file script. A cell has boundaries to define its start and end.
Because cell features operate on cells, it is important to understand how you
define boundaries explicitly, how MATLAB defines boundaries implicitly, and
how implicitly and explicitly defined cell boundaries interact to create cells.

You define cell boundaries explicitly by inserting a line that begins with a cell
break (also referred to as a cell divider), which is two percent sign characters
(%%). White space can precede these two characters, and text can follow
them, as long as there is white space between the %% characters and the text.

6-149

6 Editing and Debugging M-Files

For details on how you can insert a cell break, see “Steps for Defining Cell
Boundaries Explicitly” on page 6-150.

MATLAB defines implicit cell boundaries in a code block only when you
specify one or more explicit cell breaks within that code block. MATLAB
defines implicit cell breaks as follows:

• MATLAB defines implicit cell breaks at the top and bottom of the file, to
create an implicit cell that contains the entire file. However, the Editor
does not highlight the resulting cell, which encloses the entire file, unless
you add one or more explicit cell breaks to the file.

• If you define an explicit cell break in a function, MATLAB defines implicit
cell breaks at the function declaration and at the function end statement.

The resulting cells are nested within the full file cell. Note that if you do
not end the function with an explicit end statement, MATLAB behaves
as though the end of the function occurs immediately before the start of
the next function.

• If you define an explicit cell break within a language construct (such as an
if statement, a while statement, and so on), MATLAB defines implicit cell
breaks at the lines containing the start and end of the language construct.

The resulting cells are nested within the full file cell, and the function in
which the code block occurs, if any.

If an implicit cell break and an explicit cell break occur on the same line, they
collapse into one explicit cell break. For more information on nested cells, see
“Understanding Nested Cells” on page 6-155.

Steps for Defining Cell Boundaries Explicitly
To define cell boundaries explicitly, follow these steps:

1 Ensure that cell mode is enabled. (See “Rapid Code Iteration Overview”
on page 6-147.)

2 Optionally, to help you distinguish cells from each other, do one or both
of the following:

• To include a faint gray horizontal line (rule) above each
cell to help you distinguish the cells from each other, select

6-150

Using Cells for Rapid Code Iteration and Publishing Results

File > Preferences > Editor > Display, and then in Cell display
options, select Show lines between cells.

The horizontal lines do not appear in the M-file when you print it.

• To set a color to indicate the current cell select
File > Preferences > Editor > Display. Then, in Cell display
options, select Highlight cells, and then select the color that you want.
By default, MATLAB highlights the current cell in yellow.

The current cell is the cell where you have placed the cursor. Like the
lines between cells, highlighting helps you distinguish the cells from
each other.

3 Do one of the following to insert the cell breaks:

• Position the cursor just before the line at which you want to start the cell
and select Cell > Insert Cell Divider .

• Click the Insert Cell Divider button .

• Enter two percent signs (%%) at the start of the line where you want to
begin the new cell.

• Select the lines of code you want in a cell and then select Cell > Insert
Cell Dividers Around Selection

You can define a cell at the start of a new empty file, enter code for the cell,
define the start of the next cell, enter its code, and so on. Redefine cells by
defining new cells, removing existing cell boundaries, and moving lines of code.

MATLAB does not execute the code in lines beginning with %%, so put any
executable code for the cell on the following line. For program control
statements, such as if ... end, a cell must contain both the opening and
closing statements, that is, it must contain both the if and the end statements.

Note that MATLAB considers the entire file to be a single cell, therefore the
first line in a file does not have to begin with %%.

Cell Titles and Highlighting
After the %% characters, type a space, followed by a description of the cell. The
Editor emphasizes the special meaning of the start of a cell by making any
text following the percent signs appear bold. The text on the %% line is called

6-151

6 Editing and Debugging M-Files

the cell title. Including text in cell titles is optional, however, it improves the
readability of the file and is used for cell publishing features.

When the cursor is positioned in any line within a cell, the Editor highlights
the entire cell that contains that cell with a yellow background. This
identifies it as the current cell. For example, it is used when you select
the Evaluate Current Cell option on the Cell menu. If you do not want
yellow highlighting for the current cell, change it using preferences. Select
File > Preferences > Editor > Display and change the appropriate Cell
display options.

Example — Define Cells
This example defines two cells for a simple M-file called sine_wave.m, shown
in the following code and figure.

The steps that follow insert a cell breaks into to the code to create two cells.
The first cell creates the basic results, while the second labels the plot. The
two cells allow you to experiment with the plot of the data first, and then when
that is final, change the plot properties to affect the style of presentation.

% Define the range for x.
% Calculate and plot y = sin(x).
x = 0:1:6*pi;
y = sin(x);
plot(x,y)
title('Sine Wave','FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca,'Color','w')
set(gcf, 'MenuBar', 'none')

6-152

Using Cells for Rapid Code Iteration and Publishing Results

M-file before defining cells.

1 Select Cell > Enable Cell Mode, if it is not already enabled.

2 Position the cursor at the start of the first line. Select Cell > Insert Cell
Divider.

The Editor inserts %% as the first line and moves the rest of the file down
one line. All lines are highlighted in yellow, indicating that the entire file is
a single cell, assuming you have that display preference for cells selected.

3 After the %%, type a space and then enter a cell title.

%% Calculate and Plot Sine Wave

4 Position the cursor at the start of line 7, title..., and then select
Cell > Insert Cell Divider.

The Editor inserts a line containing only %% at line 7 and moves the
remaining lines down one line. A horizontal line that helps you distinguish
the two cells appears above the %% line, assuming you have that display
preference for cells selected. Lines 7 through 12 are highlighted in yellow,
indicating they comprise the current cell.

5 On line 7, type a space after the %%, and then enter a cell title for the new
cell.

6-153

6 Editing and Debugging M-Files

%% Modify Plot Properties

Save the file. The file appears as shown in this figure.

M-file after defining cells.

Use preferences to show horizontal lines
between cells and highlighting of current cell.

Removing Cells
To remove a cell, do one of the following:

• Delete one of the percent signs (%) from the line that starts the cell.

This changes the line from a cell break to a standard comment.

• Delete the entire line that contains the %% characters.

6-154

Using Cells for Rapid Code Iteration and Publishing Results

In both cases, because you remove the cell break, MATLAB merges the two
cells that were previously separated by the cell break.

Understanding Nested Cells
You can insert cells within nested code, which results in nested cells. The
following sections illustrate how inserting explicit cell breaks interacts with
the implicit cell breaks that MATLAB inserts within an M-file.

• “M-File Without Explicit Cell Breaks” on page 6-155

• “How Nesting Cell Breaks Result in Cells” on page 6-156

• “Example M-File With Nested Cell Breaks” on page 6-157

• “Associating Cell Breaks with Subfunctions” on page 6-162

M-File Without Explicit Cell Breaks
The following code when viewed in an M-file displays no cells or highlighting;
it is a single, implicit cell, defined by MATLAB.

function fourier
t = 0:.1:pi*4;
y = sin(t);
updatePlot(1,t,y);

for k = 3:2:9
y = y + sin(k*t)/k;
display(sprintf('When k = %.1f',k));

end
end

function updatePlot(k,t,x)
cla
plot(t,x)

end

This code appears as shown in the following image when you view it in the
Editor.

6-155

6 Editing and Debugging M-Files

How Nesting Cell Breaks Result in Cells
Suppose you insert two cell breaks into fourier.m as follows:

1 One within the fourier function, at line 5.

2 One within the for loop, at line 7.

This results in the following cells, which are illustrated in “Example M-File
With Nested Cell Breaks” on page 6-157:

• One at the outermost level, from the top to the bottom of the file.

6-156

Using Cells for Rapid Code Iteration and Publishing Results

• Two at the second level, within the fourier function:

- One from the implicit break at line 2 to the explicit break at line 5.

- One from the explicit break at line 5 to the implicit break before line 11
(end of the function).

• One at the third level, within the for loop from the explicit line break at
line 7 to the implicit line break before line 10.

Example M-File With Nested Cell Breaks
The following images illustrate how inserting explicit cell breaks as described
in “How Nesting Cell Breaks Result in Cells” on page 6-156 affect the
appearance of the M-file:

• First level of nesting — When you place the cursor outside a function, at
the outermost level, the entire file is highlighted showing that it comprises
a cell at this level of nesting.

6-157

6 Editing and Debugging M-Files

Cursor at
outermost
level

MATLAB only defines implicit cell breaks in a code block if you specify
an explicit cell break within that code block. Therefore, because function
updatePlot in this example has no explicit (and therefore, no implicit)
cell breaks defined for it, when you place the cursor within that function,
MATLAB considers the cursor to be within the cell that encloses the whole
file.

6-158

Using Cells for Rapid Code Iteration and Publishing Results

Cursor in function
with no explict, and
therefore no implicit,
cells defined.

• Second level of nesting — When you place the cursor within the function
(but outside the for loop), either the first or second cell at this level of
nesting is highlighted, depending on where the cursor is located.

6-159

6 Editing and Debugging M-Files

First cell within
function

6-160

Using Cells for Rapid Code Iteration and Publishing Results

Second cell
within
function

• Third level of nesting — When you place the cursor within the for loop, the
cell within this loop is highlighted.

6-161

6 Editing and Debugging M-Files

Cell within
for loop

Associating Cell Breaks with Subfunctions
Be aware that if you want a cell break to be associated with a subfunction,
you should place it within the subfunction, rather than above the subfunction
declaration. Otherwise, it creates a single cell within the code block that
precedes the subfunction. The following two images demonstrate this using
collatzplot_new.m.

6-162

Using Cells for Rapid Code Iteration and Publishing Results

6-163

6 Editing and Debugging M-Files

Navigating and Evaluating with Cells
While you develop an M-file, you can use these Editor cell features:

6-164

Using Cells for Rapid Code Iteration and Publishing Results

• “Navigating Among Cells in an M-File” on page 6-165

• “Evaluating Cells in an M-File” on page 6-165

• “Processing Considerations When Evaluating Cells” on page 6-166

• “Modifying Values in a Cell” on page 6-167

• “Example — Evaluate Cells” on page 6-168

Navigating Among Cells in an M-File
To move to the next cell, select Cell > Next Cell. To move to the previous cell,
select Cell > Previous Cell. To move to a specific cell, click the Show Cell
Titles button and from it, select the cell title to which you want to move.
You can also go to cells by selecting Edit > Go To.

Evaluating Cells in an M-File
To evaluate the code in a cell, use the Cell menu evaluation items or
equivalent buttons in the cell toolbar. When you evaluate a cell, the results
display in the Command Window, figure window, or otherwise, depending
on the code evaluated.

The cell evaluation features run the code currently shown in the Editor, even
if the file contains unsaved changes. The file does not have to be on the search
path. To evaluate a cell, it must contain all the values it requires, or the
values must already exist in the MATLAB workspace.

Evaluate Current Cell. Select Cell > Evaluate Current Cell or click the
Evaluate Cell button to run the code in the current cell.

Evaluate and Advance. Select Cell > Evaluate Current Cell and
Advance or click the Evaluate Cell and Advance button to run the code in
the current cell and move to the next cell.

Evaluate File. Select Cell > Evaluate Entire File or click the Evaluate
Entire File button to run all of the code in the file. By default, the Evaluate
Entire File button is not on the Editor toolbar. See “Toolbars Preferences for
the MATLAB® Desktop and Editor” on page 2-87 for information on how
to add it.

6-165

6 Editing and Debugging M-Files

Note A beep means there is an error. See the Command Window for the
error message.

Processing Considerations When Evaluating Cells
This section describes processing considerations that you need to take into
account when you evaluate cells in M-files.

Setting Breakpoints. While you can set breakpoints and debug a file
containing cells, when you evaluate a file from the Cell menu or cell toolbar,
breakpoints are ignored. To run the file and stop at breakpoints, use
Run/Continue in the Debug menu. This means you cannot debug while
running a single cell.

Using Cells in Function M-Files. You can define and evaluate cells in
function M-files as long as the variables referenced in the cell are in your
workspace. This can be useful during debugging. If execution is stopped at
a breakpoint, you can define cells and execute them without saving the file.
If you are not debugging, add the necessary variables to the base workspace
and then execute the cells.

Using Function Names as Variable Names in Cells. If you use a
MATLAB function name as a variable name within a cell, you may receive
an unexpected error when you evaluate the cell. The precedence rules that
MATLAB typically follows do not apply when it evaluates a cell. Typically,
MATLAB evaluates variables before functions. However, when you evaluate
cells, MATLAB parses all the cell code and loads it into memory before
evaluating it. Therefore, functions might be evaluated before variables under
some circumstances, as illustrated by the following example:

Suppose you create a MAT file, mydata.mat, using the following commands:

clear all
info=5;
save mydata.mat
clear all

6-166

Using Cells for Rapid Code Iteration and Publishing Results

When you enter the following commands in the Command Window, b
evaluates to 5, as expected:

load mydata
b=info

However, when you evaluate the same commands in an M-File cell, b
evaluates to the MATLAB info function, thus the Command Window displays
the following error:

??? Error using ==> info
Too many output arguments.

For this reason, you may want to avoid using function names as variable
names within M-file cells.

Modifying Values in a Cell
You can use cell features to modify numbers in a cell, which also automatically
reevaluates the cell. This helps you experiment with and fine-tune your code.

To modify a number in a cell, select the number (or place the cursor near
it) and use the value modification tool in the cell toolbar. Using this tool,
you can specify a number and press the appropriate math operator to add
(increment), subtract (decrement), multiply, or divide the number. The cell
then automatically reevaluates.

Decrement/increment number

Decrement and
increment buttons

Divide/multiply number

Divide and
multiply buttons

6-167

6 Editing and Debugging M-Files

You can use the numeric keypad operator keys (-, +, /, and *) instead of the
operator buttons on the toolbar.

Note MATLAB software does not automatically save changes you make to
values using the cell toolbar. To save changes, select File > Save.

Example — Evaluate Cells
In this example, modify the values for x in sine_wave.m:

1 Run the first cell in sine_wav.m. Click somewhere in the first cell, that
is, between lines 1 and 6. Select Cell > Evaluate Current Cell. The
following figure appears.

6-168

Using Cells for Rapid Code Iteration and Publishing Results

Plot generated by running sine_wave.m.

2 Assume you want to produce a smoother curve. Use more values for x in
0:1:6*pi. Position the cursor in line 4, next to the 1. In the cell toolbar,
change the 1.1 default multiply/divide by value to 2. Click the Divide
button .

Line 4 becomes

6-169

6 Editing and Debugging M-Files

and the length of x doubles. The plot automatically updates. The curve
still has some rough edges.

3 To add more values for x, click the Divide button three more times. Line 4
becomes

The curve is smooth, but because there are more values, processing time is
slower. It would be better to find a smaller x that still produces a smooth
curve.

4 In the cell toolbar, click the Multiply button once. The increment for x as
shown in line 4 changes from 0.0625 to 0.125.

The resulting curve is still smooth.

5 Save these changes. Select File > Save.

6 Now you can apply the plot properties, defined in the second cell, that is,
lines 7 through 12. You do not need to evaluate the entire file to apply the
plot properties. Instead, position the cursor in the second cell and use the
shortcut Ctrl+Enter to evaluate the current cell. (The shortcut appears
with the menu item, Cell > Evaluate Current Cell.)

6-170

Using Cells for Rapid Code Iteration and Publishing Results

MATLAB updates the figure.

6-171

6 Editing and Debugging M-Files

6-172

7

Tuning and Managing
M-Files

This set of tools provides useful information about the M-files in a directory
that can help you refine the files and improve performance. The tools can help
you polish M-files before providing them to others to use. If you have an active
Internet connection, you can watch the Directory Reports video demo for an
overview of the major functionality.

Directory Reports in Current
Directory Browser (p. 7-2)

HTML reports about files in the
current directory: TODO/FIXME,
Help, Contents, Dependency,
Coverage (for Profiling), and M-Lint
Code Check.

M-Lint Code Check Report (p. 7-16) Report that identifies potential
errors, problems, and opportunities
for improvement in your code.

Profiling for Improving Performance
(p. 7-27)

Report that identifies where
an M-file spends the most
time, indicating where to focus
when looking for performance
improvements.

7 Tuning and Managing M-Files

Directory Reports in Current Directory Browser

In this section...

“Accessing and Using Directory Reports” on page 7-2

“TODO/FIXME Report” on page 7-4

“Help Report” on page 7-6

“Contents Report” on page 7-9

“Dependency Report” on page 7-13

“Coverage Report” on page 7-15

See also another Directory Report, “M-Lint Code Check Report” on page 7-16,
and the File Comparisons tool.

Accessing and Using Directory Reports
Directory reports help you refine the M-files in a directory and improve their
performance. They are also useful for when you prepare files for use by
others, such as for a finished project, to share on MATLAB Central, or for
a toolbox to be distributed.

Access directory reports from the MATLAB® Current Directory browser, as
follows:

1 Select Desktop > Current Directory.

For more information, see “Current Directory Browser” on page 5-46.

Navigate to the directory containing the M-files for which you want to produce
reports. Then, in the Current Directory browser toolbar, click the down arrow
button and select the type of report you want to run for all the M-files in
the current directory.

7-2

Directory Reports in Current Directory Browser

The report you selected appears as an HTML document in the MATLAB Web
Browser:

• In a report, click a file name to open that file in the Editor, where you can
view it or make changes to it. Click a line number to open the file at that
line.

• To update a report after making changes to the report options, or after
changing any files in the directory, click Rerun This Report. Note that
this reruns the report for the directory shown in the report, not for the
MATLAB current directory.

• While a report is displayed, you can change the MATLAB current directory
and then click Run Report on Current Directory to generate the same
type of report for the new current directory.

• When you run a report, it replaces the report currently displayed. Use
the Back and Forward buttons in the toolbar to see a previously run
report and then return to the most recent. If the toolbar is not visible,
select Desktop >

Web Browser Toolbar.

7-3

7 Tuning and Managing M-Files

You cannot run directory reports when the path is a UNC (Universal Naming
Convention) path, that is, starts with \\. Instead, use an actual hard drive on
your system, or a mapped network drive.

TODO/FIXME Report
The TODO/FIXME Report shows M-files that contain text strings you
included as notes to yourself, such as TODO. Use this report to easily identify
M-files that still require work or some other actions.

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

In the report, select one or more check boxes to display lines containing the
specified strings (TODO and FIXME), and click Rerun This Report. You can
also select the check box for the text field and enter any text string in the
field, such as NOTE or TBD to identify lines containing that string.

7-4

Directory Reports in Current Directory Browser

7-5

7 Tuning and Managing M-Files

Help Report
The Help Report presents a summary view of the help component of
your M-files. In MATLAB, the M-file help component is all contiguous
nonexecutable lines (comment lines and blank lines), starting with the
second line of a function M-file or the first line of a script M-file. For more
information about creating help for your own M-files, see the reference page
for the help function.

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

Select one or more check boxes to display the specified help information and
click Rerun This Report.

Use this information to help you identify files of interest or files that lack help
information. It is a good practice to provide help for your files not only to help
you recall their purpose, but to help others who might use the files.

7-6

Directory Reports in Current Directory Browser

Show Subfunctions
With Show subfunctions selected, the Help Report displays help
information for all subfunctions called by each function. Help information for
subfunctions is highlighted in gray.

7-7

7 Tuning and Managing M-Files

Description
With Description selected, the Help Report displays the first line of help in
the M-file. If the first comment line is empty, or if there is not a comment
before the executable code, No description line, highlighted in pink, appears
instead.

Examples
With Examples selected, the Help Report displays the line number where the
examples section of the M-file help begins. The Help Report looks for a line in
the M-file help that begins with the string example or Example and displays
any subsequent nonblank comment lines. Select this option to easily locate
and go to examples in your M-files.

It is a good practice to include examples in the help for your M-files. If you do
not have examples in the help for all your M-files, use this option to identify
those without examples. If the report does not find examples in the M-file
help, No example, highlighted in pink, appears.

Show All Help
With Show all help selected, the Help Report displays complete M-file help,
which is all contiguous nonexecutable lines (comment lines and blank lines),
starting with the second line of a function M-file, or the first line of a script
M-file. The M-file help shown also includes overloaded functions and methods,
which are not actually part of the M-file help comments, but are automatically
generated when help runs.

If the comment lines before the executable code are empty, or if there are no
comments before the executable code, No help, highlighted in pink, appears
instead.

See Also
With See Also selected, the Help Report displays the line number for the
see also line in the M-file help. The see also line in M-file help lists related
functions. When the MATLAB Command Window displays the help for an
M-file, any function name listed on the see also line appears as a link you can
click to display its help. It is a good practice to include a see also line in the
help for your M-files.

7-8

Directory Reports in Current Directory Browser

The report looks for a line in the M-file help that begins with the string See
also. If the report does not find a see also line in the M-file help, No see-also
line, highlighted in pink, appears. This helps you identify those M-files
without a see also line, should you want to include one in each M-file.

The report also indicates when an M-file noted in the see also line is not in a
directory on the search path. You might want to move that file to a directory
that is on the search path. If not, you will not be able to click the link to get
help for the file, unless you then add its directory to the path or make its
directory become the current directory.

Copyright
With Copyright selected, the Help Report displays the line number for the
copyright line in the M-file. The report looks for a comment line in the M-file
that begins with the string Copyright and is followed by year1-year2 (with
no spaces between the years and the hyphen that separates them). It also
notes if the end of the date range is not the current year.

It is a good practice to include a copyright line in the help for your M-files,
that notes the year you created the file and the current year. For example,
for an M-file you created in 2001, include this line

% Copyright 2001-2006

If the report does not find a copyright line in the M-file help, No copyright
line, highlighted in pink, appears. This helps you identify those files without
a copyright line, should you want to include one in each M-file.

Contents Report
The Contents Report displays information about the integrity of the
Contents.m file for the directory. A Contents.m file includes the file name and
a brief description of each M-file in the directory. When you type help followed
by the directory name, such as help mydemos, The MATLAB Command
window displays the information contained within the mydemos/Contents.m
file. For more information, see “Providing Help for Your Program” in the
MATLAB Programming documentation.

7-9

7 Tuning and Managing M-Files

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

If there is no Contents.m file for the directory and you run the Contents
Report, the report tells you the Contents.m file does not exist and asks if you
want to create one. Click yes to automatically create the Contents.m file.
Edit the Contents.m file in the Editor to include the names of files you plan
to create, or to remove files that you do not want to expose when displaying
help for the directory, such as files for internal use.

You need to update the Contents.m file to reflect changes you make to files in
the directory. For example, when you remove a file from a directory, remove its
entry from the Contents.m file. The Contents Report helps you to maintain
the Contents.m file. It displays discrepancies between the Contents.m file
and the M-files in the directory.

7-10

Directory Reports in Current Directory Browser

Use the links displayed for each line, or edit the Contents.m file directly, or
edit the M-files to make the changes. To make all of the suggested changes at
once, click fix all. To automatically align the file names and descriptions in
the Contents.m file, click fix spacing.

7-11

7 Tuning and Managing M-Files

If you always want the Contents.m file to reflect all files in the directory,
you can automatically generate a new Contents.m file rather than changing
the file based on the Contents Report. To do this, first delete the existing
Contents.m file, run the Contents Report, and click yes when prompted for
MATLAB to automatically create one.

Messages in the Contents File Report

No Contents File. This message appears if there is no Contents.m file in the
directory. Click yes to automatically create a Contents.m file, which contains
the file names and descriptions for all M-files in the directory.

No Contents.m file. Make one? [yes]

File Not Found. This message appears when a file included in Contents.m is
not in the directory. These messages are highlighted in pink. For example, a
message such as

File helloworld does not appear in this directory.
Remove it from Contents.m? [yes]

means the Contents.m file includes an entry for helloworld, but that file is
not in the directory. This might be because you removed the file helloworld,
or you manually added it to Contents.m because you planned to create the
file but have not as yet, or you renamed helloworld.

Description Lines Do Not Match. This message appears when the
description line in the M-file help does not match the description provided for
the M-file in Contents.m. These messages are highlighted in pink. Click yes
to replace the description in the Contents.m file with the description from the
M-file. Or select the option to replace the description line in the M-file help
using the description for that file in Contents.m.

Description lines do not match for file logo5.
Use this description from the file? (default) [yes]
logo5 - This is the basic logo image for MATLAB V5

Or put this description from the Contents into the file? [yes]
logo5 - This is the basic logo image for MATLAB

7-12

Directory Reports in Current Directory Browser

Files Not In Contents.m. This message appears when a file in the directory
is not in Contents.m. These messages are highlighted in gray. Click yes
to add the file name and its description line from the M-file help to the
Contents.m file.

collatzall is in the directory but not Contents.m
collatzall - Plot length of sequence for Collatz problem

Add the line shown above? [yes]

Dependency Report
The Dependency Report shows dependencies among M-files in a directory.
This helps you determine all the M-files you need to provide when you tell
someone to run a particular M-file. If you do not provide all the dependent
M-files along with the M-file you want them to run, they will not be able
run the file. The report does not list as dependencies the M-files in the
toolbox/matlab directory because every MATLAB user already has those
files.

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2. You can also access the report from the Editor Tools
menu.

Select Show child functions to see a list of all M-files (children) called by
each M-file in the directory (parent). The report also indicates where each
child function resides, for example, in a specified toolbox. If a child function’s
location is listed as unknown, it could be because the child function is not on
the search path or in the current directory.

7-13

7 Tuning and Managing M-Files

The Dependency Report is similar to running the depfun function, although
the two do not provide the exact same results. For performance purposes, the
Dependency Report limits the functions considered.

Select Show parent functions to list the M-files that call each M-file.
The report limits the parent (calling) functions to those in the current
directory. Select Show subfunctions to include subfunctions in the report.
Subfunctions are listed directly after the main function and are highlighted
in gray.

7-14

Directory Reports in Current Directory Browser

Coverage Report
Run the Coverage Report after you run the Profiler to identify how much of a
file ran when it was profiled. For example, when you have an if statement
in your code, that section might not run during profiling, depending on
conditions.

You can run the Coverage Report from the Profiler, or follow these steps:

1 In the MATLAB desktop, select Desktop > Profiler. Profile an M-file
in the Profiler. For detailed instructions, see “Profiling for Improving
Performance” on page 7-27.

2 In the Current Directory browser, select Coverage Report. The Coverage
Report appears, providing a summary of coverage for the M-file you
profiled.

3 Click the Coverage link to see the Profile Detail Report for the file.

7-15

7 Tuning and Managing M-Files

M-Lint Code Check Report

In this section...

“Running the M-Lint Code Check Directory Report” on page 7-16

“Making Changes Based on M-Lint Messages” on page 7-18

“Other Ways to Access M-Lint” on page 7-26

Running the M-Lint Code Check Directory Report
The M-Lint Code Check Report displays potential errors and problems, as
well as opportunities for improvement in your code. The term “lint” is the
name given to similar tools used with other programming languages such as
C. M-Lint produces a message for each line of an M-file that it determines
might be improved. For example, a common M-Lint message is that a variable
foo in line 12 is defined but never used in the M-file.

To run the M-Lint code check directory report, follow these steps:

1 In the Current Directory browser, navigate to the directory that contains
the M-files you want to check with M-Lint. To use the example shown in
this documentation, lengthofline.m, you can change the current directory
by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

2 If you plan to modify the example, save the file to a directory for which you
have write access, and then make that directory the current MATLAB®

directory. In this example, the file is saved to I:\MATLABFiles\mymfiles.

3 In the Current Directory browser toolbar, select the M-Lint Code Check
Report from the Directory Reports listing—for details, see “Accessing and
Using Directory Reports” on page 7-2.

The M-Lint Code Check Report displays in the MATLAB Web Browser,
showing those M-files that M-Lint identified as having potential problems
or opportunities for improvement.

7-16

M-Lint Code Check Report

(
	�)���
	������%�
�������������4�	
��	�
����#�	����������
	���

�	������%�����
����� �
����	%	� ��
������	�
���%
��
��	���!�����
�������	���

4 For each message, review the suggestion and your code, click the line
number to open the M-file in the Editor at that line, and make changes
based on the message. Use the following general advice:

• If you are not sure what a message means or what to change in the code
as a result, use the Help browser to look for related topics in the online
documentation. For examples of messages and what to do about them,
including specific changes to make for the example, lengthofline.m,
see “Making Changes Based on M-Lint Messages” on page 7-18.

7-17

7 Tuning and Managing M-Files

• M-Lint does not provide perfect information about every situation and
in some cases, you might not want to make any changes based on the
M-Lint message. In the event you do not want to change the code but you
also do not want to see the M-Lint message for that line in the M-Lint
Report, instruct M-Lint to ignore a line by adding %#ok to the end of
the line in the M-file. (You can override the %#ok by running the mlint
function with the '-notok' tag.)

• If there are certain messages or types of messages you do not want to
see, you can set a preference so that M-Lint does not report them. Select
File > Preferences > M-Lint. In Select messages to enable, clear
the check box for messages you do not want to see. Review the settings
for all messages to ensure you are seeing those pertinent to your file.
Click OK. For more information, click the Help button in the M-Lint
Preferences pane. The next time you run the report, the messages
will not appear. You can use %#ok with a specific message ID so that
only that type of message is suppressed—for more information, see the
reference page for mlint.

5 After making changes, save the M-file. Consider saving the file to a
different name if you made significant changes that might introduce errors.
Then you can refer to the original file if needed to resolve problems with
the updated file. Use Tools > Compare Against in the Editor to help
you identify the changes you made to the file. For more information, see
“Comparing Files and Directories” on page 6-57.

6 Run and debug the file(s) again to be sure you have not introduced any
inadvertent errors.

7 If the M-Lint Code Check Report is already displayed, click Rerun This
Report to update the report based on the changes you made to the file, or
run the report from the Current Directory browser toolbar. Ensure the
M-Lint messages are gone, based on the changes you made to the M-files.

Making Changes Based on M-Lint Messages
For information on how to correct the potential problems presented by M-Lint,
use the following resources:

• Look for relevant topics in the MATLAB Programming and “Programming
Tips” documentation.

7-18

M-Lint Code Check Report

• Use the Help browser Search and Index panes to find documentation
about terms presented in the M-Lint messages.

Other techniques to help you identify problems in and improve your M-files
are in these topics:

• “Syntax Highlighting” on page 6-28 in the Command Window and the
Editor

• “Examining Errors” on page 3-8 generated when you run the M-file

• “Finding Errors, Debugging, and Correcting M-Files” on page 6-97, namely
the Editor and debugging functions

• “Profiling for Improving Performance” on page 7-27 for improving
performance

Example Using M-Lint Messages to Improve Code
An example file, lengthofline.m, is included with the MATLAB product in
matlabroot/matlab/help/techdoc/matlab_env/examples.

To run the M-Lint Code Check Report for lengthofline.m, change the
current directory to its location by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

In the Current Directory browser, select the M-Lint Code Check Report
from the list of directory reports on the toolbar.

The M-Lint Code Check Report appears, with its list of messages suggesting
improvements you can make to lengthofline.m and any other files in the
directory.

7-19

7 Tuning and Managing M-Files

7-20

M-Lint Code Check Report

Messages and Resulting Changes for the lengthofline Example. The
following table describes each message and demonstrates a way to change the
file, based on the message.

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

22: The value assigned here to
variable 'nothandle' might never be
used.

— — — — — — — — — — — — — — — — —

22 nothandle = ~ishandle(hline);

23 for nh = 1:prod(size(hline))

24 notline(nh) = ~ishandle(hline(nh))
...

In line 22, nothandle is assigned a value, but
nothandle is probably not used anywhere after
that in the file. The line might be extraneous
and you could delete it. But it might be that
you actually intended to use the variable, which
is the case for the lengthofline example.
Update line 24 to use nothandle, which is
faster than computing ~ishandle for each
iteration of the loop, as shown here.

22 nothandle = ~ishandle(hline);

23 for nh = 1:numel(hline)

24 notline(nh) = nothandle(nh) ...

23: NUMEL(x) is usually faster than
PROD(SIZE(x)).

— — — — — — — — — — — — — — — — —

23 for nh = 1:prod(size(hline))

While prod(size(x)) returns the number
of elements in a matrix, the numel function
was designed to do just that, and therefore is
usually more efficient. Type doc numel to see
the numel reference page. Change the line to

23 for nh = 1:numel(hline)

7-21

7 Tuning and Managing M-Files

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

24: 'notline' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

22 nothandle = ~ishandle(hline);

23 for nh = 1:numel(hline)

24 notline(nh) = ~ishandle(hline(nh))
...

When you increase the size of an array within
a loop, it is inefficient. Before the loop,
preallocate the array to its maximum size to
improve performance. For more information,
see “Preallocating Memory” in the MATLAB
Programming documentation. In the example,
add a new line to preallocate notline before
the loop.

23 notline = false(size(hline));

24 for nh = 1:numel(hline)

25 notline(nh) = nothandle(nh) ...

24: Use STRCMPI(str1,str2) instead of
using LOWER in a call to STRCMP.

— — — — — — — — — — — — — — — — —

24 notline(nh)=~ishandle(hline(nh)) ||
~strcmp('line',lower(get(hline(nh),
'type')));

While

strcmp
('line',lower(get(hline(nh)'type'))

converts the result of the get function to a
lowercase string before doing the comparison,
the strcmpi function ignores the case while
performing the comparison, with advantages
that include more efficiency. Change line 25 to

notline(nh) = nothandle(nh) ||
~strcmpi('line',get(hline(nh),'type'));

28: NUMEL(x) is usually faster than
PROD(SIZE(x)).

— — — — — — — — — — — — — — — — —

28 for nl = 1:prod(size(hline))

See the same message and explanation
reported for line 23. Change the line 29 to

for nl = 1:numel(hline)

7-22

M-Lint Code Check Report

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

34: 'data' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

33 for nd = 1:length(fdata)

34 data{nd} = getfield(flds,fdata{nd});

See the same message and explanation
reported for line 24. Add this line, 34, before
the loop

data = cell(size(fdata));

34: Use dynamic fieldnames with
structures instead of GETFIELD. Type
'doc struct' for more information.

— — — — — — — — — — — — — — — — —

34 data{nd} = getfield(flds,fdata{nd});

You can access a field in a structure as a
variable expression that MATLAB evaluates
at run-time. This is more efficient than using
getfield. For more information, type doc
struct to see the reference page for structures,
or see “Using Dynamic Field Names” in
the MATLAB Programming documentation.
Change line 37 to

data{nd} = flds.(fdata{nd});

38: Use || instead of | as the OR
operator in (scalar) conditional
statements.

39: Use || instead of | as the OR
operator in (scalar) conditional
statements.

40: Use || instead of | as the OR
operator in (scalar) conditional
statements.

— — — — — — — — — — — — — — — — —

38 if isempty(data{3}) | ...

39 (length(unique(data{1}(:)))==1 | ...

40 length(unique(data{2}(:)))==1 | ...

41 length(unique(data{3}(:)))==1)

While | (the element-wise logical OR operator)
performs the comparison correctly, use the ||
(short circuit OR operator) for efficiency. For
details, see “Logical Operators” in the MATLAB
Programming documentation. Change lines
40, 41, and 42 to

if isempty(data{3}) || ...

(length(unique(data{1}(:)))==1 || ...

length(unique(data{2}(:)))==1 || ...

7-23

7 Tuning and Managing M-Files

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

42: 'data' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

42 data{3} = zeros(size(data{1}));

This message no longer appears due to
the change made to line 34 data{nd} =
getfield(flds,fdata{nd});. Sometimes
fixing code in one line automatically clears a
message for another line. If the reason for a
message or the action to take for a message is
not obvious at first, it could be because another
line is causing the message. Address the issues
that are easy to fix first and rerun the report.
Do not make any changes to line 44.

43: 'dim' might be growing inside
a loop. Consider preallocating for
speed.

43 dim(nl) = 2;

See the same message and explanation
reported for line 24. Add this line before the
first line of the loop

dim = len;

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

There is an error in this line, which you
would see by running lengthofline. M-Lint
suggests that it might be due to a parenthesis
imbalance. You can check that by moving
the arrow key over each of the delimiters, to
see if MATLAB indicates a mismatch. This
requires that File > Preferences > Keyboard
> Delimiter Matching has the Match on
arrow key option selected. There are no
mismatched delimiters. The actual problem
is the semicolon in parentheses, data{3}(:)
is incorrect and should be a colon. In line 51,
change data{3}(;) to data{3}(:). That
single change addressed the issues in all the
messages for that line.

7-24

M-Lint Code Check Report

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

49: Terminate statement with semicolon
to suppress output (in functions).

Adding a semicolon to the end of a statement
suppresses output and is a common practice.
M-Lint alerts you to lines that produce output
but lack the terminating semicolon. If you want
to view output from this line, do not add the
semicolon. You can instruct M-Lint to ignore
all messages on this line so that the messages
on it will not appear by adding %#ok to the end
of the line. However, because there is currently
another message on the line, do not add %#ok
until you have addressed the other message.

Alternatively, you can add %#ok with the
message ID for the specific message you
want to suppress. To determine the message
ID, run mlint('lengthofline.m', '-id'),
which indicates the ID is NOPRT—for more
information, see the mlint function reference
page.

For this example, assume you want to display
the output and suppress the M-Lint message.
To do so, add %#ok<NOPRT> to the end of the
line.

Note that there is a similar message for
M-file scripts. This is so you can suppress the
message for M-files that are cell-mode scripts,
because they are often intended as demos and
the display of output is intentional.

49: Use of brackets [] is unnecessary.
Use parentheses to group, if needed.

— — — — — — — — — — — — — — — — —

49 len(nl) =
sum([sqrt(dot(temp',temp'))])

For more information about the use of brackets
and parentheses, see the Special Characters
reference page. In this example, remove
the brackets because they are not needed.
They add processing time because MATLAB
concatenates unnecessarily. Change line 52 to

len(nl) = sum(sqrt(dot(temp',temp')))
%#ok

7-25

7 Tuning and Managing M-Files

+��������4�	���(���
(���)�2���������
��)	� ����� �����
����
�� ����
	����	
�
%���������4�	��
����� ����;������
����� ��
����������

The M-file that includes all of the changes suggested by M-Lint is
lengthofline2.m. To view it, run

edit(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline2.m')).

Other Ways to Access M-Lint
You can get M-Lint messages using any of the following methods. Each
provides the same M-Lint messages, but in a different format:

• Access the M-Lint Code Check report for an M-file from the Editor Tools
menu or from the Profiler detail report.

• Run the mlint function, which analyzes the specified file and displays
messages in the Command Window, or mlintrpt, which runs mlint and
displays the messages in the Web Browser.

• Use automatic M-Lint analysis and code correction while you work on a file
in the Editor—see “M-Lint Code Analyzer” on page 6-100.

7-26

Profiling for Improving Performance

Profiling for Improving Performance

In this section...

“What Is Profiling?” on page 7-27

“Profiling Process and Guidelines” on page 7-28

“Using the Profiler” on page 7-29

“Profile Summary Report” on page 7-35

“Profile Detail Report” on page 7-37

“The profile Function” on page 7-44

What Is Profiling?
Profiling is a way to measure where a program spends time. To assist you
in profiling, MATLAB® software provides a graphical user interface, called
the Profiler, which is based on the results returned by the profile function.
Once you identify which functions are consuming the most time, you can
determine why you are calling them and look for ways to minimize their
use and thus improve performance. It is often helpful to decide whether
the number of times a particular function is called is reasonable. Because
programs often have several layers, your code may not explicitly call the
most time-consuming functions. Rather, functions within your code might
be calling other time-consuming functions that can be several layers down
in the code. In this case it is important to determine which of your functions
are responsible for such calls.

Profiling helps to uncover performance problems that you can solve by

• Avoiding unnecessary computation, which can arise from oversight

• Changing your algorithm to avoid costly functions

• Avoiding recomputation by storing results for future use

When you reach the point where most of the time is spent on calls to a small
number of built-in functions, you have probably optimized the code as much
as you can expect.

7-27

7 Tuning and Managing M-Files

Profiling Process and Guidelines
Here is a general process you can follow to use the Profiler to improve
performance in your M-files. This section also describes how you can use
profiling as a debugging tool and as a way to understand complex M-files.

Note Premature optimization can increase code complexity unnecessarily
without providing a real gain in performance. Your first implementation
should be as simple as possible. Then, if speed is an issue, use profiling to
identify bottlenecks.

1 In the summary report produced by the Profiler, look for functions that
used a significant amount of time or were called most frequently. See
“Profile Summary Report” on page 7-35 for more information.

2 View the detail report produced by the Profiler for those functions and look
for the lines that use the most time or are called most often. See “Profile
Detail Report” on page 7-37 for more information.

You might want to keep a copy of your first detail report to use as a
reference to compare with after you make changes, and then profile again.

3 Determine whether there are changes you can make to the lines most called
or the most time-consuming lines to improve performance.

For example, if you have a load statement within a loop, load is called
every time the loop is called. You might be able to save time by moving the
load statement so it is before the loop and therefore is only called once.

4 Click the links to the files and make the changes you identified for potential
performance improvement. Save the files and run clear all. Run the
Profiler again and compare the results to the original report. Note that
there are inherent time fluctuations that are not dependent on your code.
If you profile the exact same code twice, you can get slightly different
results each time.

5 Repeat this process to continue improving the performance.

7-28

Profiling for Improving Performance

Using Profiling as a Debugging Tool
The Profiler is a useful tool for isolating problems in your M-files.

For example, if a particular section of the file did not run, you can look at the
detail reports to see what lines did run, which might point you to the problem.

You can also view the lines that did not run to help you develop test cases
that exercise that code.

If you get an error in the M-file when profiling, the Profiler provides partial
results in the reports. You can see what ran and what did not to help you
isolate the problem. Similarly, you can do this if you stop the execution using
Ctrl+C, which might be useful when a file is taking much more time to run
than expected.

Using Profiling for Understanding an M-File
For lengthy M-files that you did not create or that you have not used for
awhile and are unfamiliar with, you can use the Profiler to see how the M-file
actually worked. Use the Profiler detail reports to see the lines actually called.

If there is an existing GUI tool (or M-file) similar to one that you want to
create, start profiling, use the tool, then stop profiling. Look through the
Profiler detail reports to see what functions and lines ran. This helps you
determine the lines of code in the file that are most like the code you want
to create.

Using the Profiler
Use the Profiler to help you determine where you can modify your code to
make performance improvements. The Profiler is a tool that shows you where
an M-file is spending its time. This section covers

• “Opening the Profiler” on page 7-30

• “Running the Profiler” on page 7-30

• “Profiling a Graphical User Interface” on page 7-34

• “Profiling Statements from the Command Window” on page 7-34

• “Changing Fonts for the Profiler” on page 7-35

7-29

7 Tuning and Managing M-Files

For information about the reports generated by the Profiler, see “Profile
Summary Report” on page 7-35 and “Profile Detail Report” on page 7-37.

Opening the Profiler
You can use any of the following methods to open the Profiler:

• Select Desktop > Profiler from the MATLAB desktop.

• Click the Profiler button in the MATLAB desktop toolbar.

• With a file open in the MATLAB Editor, select Tools > Open Profiler.

• Select one or more statements in the Command History window, right-click
to view the context menu, and choose Profile Code.

• Enter the following function in the Command Window:

profile viewer

Running the Profiler
The following illustration summarizes the typical steps for profiling.

7-30

Profiling for Improving Performance

To profile an M-file or a line of code, follow these steps:

1 If your system uses Intel® multi-core chips, you may want to restrict the
active number of CPUs to one. See “Intel® Multi-Core Processors — Setting
for Most Accurate Profiling” on page 7-33 for details on how to do this.

2 In the Run this code field in the Profiler, type the statement you want
to run.

You can run this example

[t,y] = ode23('lotka',[0 2],[20;20])

as the code is provided with MATLAB demos. It runs the Lotka-Volterra
predator-prey population model. For more information about this model,
type lotkademo, which runs the demonstration.

7-31

7 Tuning and Managing M-Files

To run a statement you previously profiled in the current MATLAB session,
select the statement from the list box—MATLAB automatically starts
profiling the code, so skip to step 3.

3 Click Start Profiling (or press Enter after typing the statement).

While the Profiler is running, the Profile time indicator (at the top right
of the Profiler window) is green and the number of seconds it reports
increases.

When the profiling is finished, the Profile time indicator becomes dark
red and shows the length of time the Profiler ran. The statements you
profiled are shown as having been executed in the Command Window.

This is not the actual time that your statements took to run; it is the wall
clock (or tic/toc) time elapsed from when you clicked Start Profiling
until profiling stops. If the time reported is much different from what you
expected (for example, hundreds of seconds for a simple statement), you
might have had profiling on longer than you realized. This time also does
not match the time reported in Profiler Summary report statistics, which is
based on cpu time by default, not wall clock time. To view profile statistics
based on wall clock time, use the profile function with the -timer real
option as shown in “Using the profile Function to Change the Time Type
Used by the Profiler ” on page 7-48.

4 When profiling is complete, the Profile Summary report appears in the
Profiler window. For more information about this report, see “Profile
Summary Report” on page 7-35.

5 If you restricted the number of active CPUs in Step 1, reset the number of
active CPUs to the original setting.

7-32

Profiling for Improving Performance

Intel Multi-Core Processors — Setting for Most Accurate Profiling. If
your system uses Intel multicore chips, and you plan to profile using CPU
time, set the number of active CPUs to one before you start profiling. This
results in the most accurate and efficient profiling.

1 Open Windows® Task Manager.

2 On the Processes tab, right-click MATLAB.exe and then click Set Affinity.

The Processor Affinity dialog box opens.

3 In the Processor Affinity dialog box, note the current settings, and then
clear all the CPUs except one.

Your Processor Affinity dialog box should appear similar to the following
image:

4 Click OK.

5 Reset the state of the Profiler so that it recognizes the processor affinity
changes you made. The easiest way to do this is to change the Profiler

7-33

7 Tuning and Managing M-Files

timer setting from real and then back to cpu, by issuing the following
in the Command Window:

profile -timer real
profile -timer cpu

Remember to set the number of CPUs back to their original settings when you
finish profiling by rerunning the preceding steps, but restoring the original
selections in the Processor Affinity dialog box in Step 3.

Note Setting the number of computational threads to 1 in the General
Multithreading Preferences dialog box does not have the same effect as setting
the Processor Affinity to one CPU.

Profiling a Graphical User Interface
You can run the Profiler for a graphical user interface, such as the Filter
Design and Analysis tool included with Signal Processing Toolbox™. You can
also run the Profiler for an interface you created, such as one built using
GUIDE.

To profile a graphical user interface, follow these steps:

1 In the Profiler, click Start Profiling. Make sure that no code appears
in the Run this code field.

2 Start the graphical user interface. (If you do not want to include its startup
process in the profile, do not click Start Profiling, step 1, until after you
have started the graphical interface.)

3 Use the graphical interface. When you are finished, click Stop Profiling
in the Profiler.

The Profile Summary report appears in the Profiler.

Profiling Statements from the Command Window
To profile more than one statement, follow these steps:

7-34

Profiling for Improving Performance

1 In the Profiler, clear the Run this code field and click Start Profiling.

2 In the Command Window, enter and run the statements you want to profile.

3 After running all the statements, click Stop Profiling in the Profiler.

The Profile Summary report appears in the Profiler.

Changing Fonts for the Profiler
To change the fonts used in the Profiler, follow these steps:

1 Select File > Preferences > Fonts to open the Font Preferences dialog
box.

2 In the Font Preferences dialog box, select the code or text font that you
want to use in the Profiler. The Profiler is an HTML Proportional Text tool.
For more information, click the Help button in the dialog box.

3 Click Apply or OK. The Profiler font reflects the changes.

Profile Summary Report
The Profile Summary report presents statistics about the overall execution of
the function and provides summary statistics for each function called. The
report formats these values in four columns.

• Function Name — A list of all the functions and subfunctions called by
the profiled function. When first displayed, the functions are listed in
order by the amount of time they took to process. To sort the functions
alphabetically, click the Function Name link at the top of the column.

• Calls — The number of times the function was called while profiling was
on. To sort the report by the number of times functions were called, click
the Calls link at the top of the column.

• Total Time — The total time spent in a function, including all child
functions called, in seconds. The time for a function includes time spent
on child functions. To sort the functions by the amount of time they
consumed, click the Total Time link at the top of the column. By default,
the summary report displays profiling information sorted by Total Time.
Note that the Profiler itself uses some time, which is included in the

7-35

7 Tuning and Managing M-Files

results. Also note that total time can be zero for files whose running time
was inconsequential.

• Self Time — The total time spent in a function, not including time for any
child functions called, in seconds. To sort the functions by this time value,
click the Self Time link at the top of the column.

• Total Time Plot — Graphic display showing self time compared to total
time.

Following is the summary report for the Lotka-Volterra model described in
“Example: Using the profile Function” on page 7-45.

To print a summary report, click the Print button .

To get more detailed information about a particular function, click its name
in the Function Name column. See “Profile Detail Report” on page 7-37
for more information.

7-36

Profiling for Improving Performance

Profile Detail Report
The Profile Detail report shows profiling results for a selected function that
was called during profiling. A Profile Detail report is made up of seven
sections, summarized below. By default, the Profile Detail report includes
all seven sections, although, depending on the function, not every section
contains data. To return to the Profile Summary report from the Profile
Detail report, click the Home button in the toolbar. The following sections
provide more detail:

7-37

7 Tuning and Managing M-Files

Controlling the Contents of the
Detail Report Display (p. 7-38)

Customize display to include only
sections you are interested in.

Profile Detail Report Header (p. 7-40) Provides general information about
the function.

Parent Functions (p. 7-40) Provides information about the
parent function.

Busy Lines (p. 7-40) Lists the lines in the function
that used the greatest amount of
processing time.

Child Functions (p. 7-41)

M-Lint Results (p. 7-42) Lists the lines in the functions that
M-Lint highlighted.

File Coverage (p. 7-42) Provides statistics about the lines of
code in the function that executed
while profiling was on.

Function Listing (p. 7-43) Includes the source code for the
function, if it is an M-file.

Controlling the Contents of the Detail Report Display
You can determine which sections are included in the display by selecting
them and then clicking the Refresh button. The following sections provide
more detail about each section of this report.

7-38

Profiling for Improving Performance

7-39

7 Tuning and Managing M-Files

Profile Detail Report Header
The detail report header includes the name of the function that was profiled,
the number of times it was called in the parent function, and the amount of
time it used.

The header includes a link that opens the function in your default text editor.

The header also includes a link that copies the report to a separate window.
Creating a copy of the report can be helpful when you make changes to the file,
run the Profiler for the updated file, and compare the Profile Detail reports
for the two runs. Do not make changes to M-files provided with products from
The MathWorks™, that is, files in matlabroot/toolbox directories.

Parent Functions
To include the Parents section in the detail report, select the Show parent
functions check box. This section of the report provides information about
the parent functions, with links to their detail reports.

Busy Lines
To include information about the lines of code that used the most amount of
processing time in the detail report, select the Show busy lines check box.

7-40

Profiling for Improving Performance

Note that this was not selected in the example. Click a line number to view
that line of code in the source listing.

Child Functions
To include the Children section of the detail report, select the Show child
functions check box. This section of the report lists all the functions called
by the profiled function. If the called function is an M-file, you can view the
source code for the function by clicking its name.

7-41

7 Tuning and Managing M-Files

M-Lint Results
To include the M-Lint results section in the detail report display, select
the Show M-Lint results check box. This section of the report provides
information about problems and potential improvements, generated by
M-Lint about the function. For more information about M-Lint, see “M-Lint
Code Check Report” on page 7-16.

File Coverage
To include the Coverage results section in the detail report display, select
the Show file coverage check box. This section of the report provides
statistical information about the number of lines in the code that executed
during the profile run.

7-42

Profiling for Improving Performance

Function Listing
To include the Function listing section in the detail report display, select
the Show function listing check box. If the file is an M-file, the Profile
Detail report includes a column listing the execution time for each line, a
column listing the number of times the line was called, and the source code
for the function.

In the function listing, comment lines appear in green, lines of code that
executed appear in black, and lines of code that did not execute appear in
gray. If you click a function name in the listing, you can view its detail report.

By default, the Profile Detail report uses the color red to highlight the lines of
code with the longest execution time. The darker the shade of red, the longer
the line of code took to execute. Using the menu in this section of the detail
report you can change this default and choose to highlight lines of code based
on other criteria such as the lines called the most, lines called out by M-Lint,
or lines of code that were (or were not) executed. Using this menu, you can
also turn off highlighting completely.

7-43

7 Tuning and Managing M-Files

The profile Function
The Profiler is based on the results returned by the profile function. The
profile function provides some features that are not available in the GUI.
For example, using the function, you can specify that the statistics display the
time it takes for statements to run as clock time instead of CPU time.

This section includes the following topics with respect to the profile function:

• “Example: Using the profile Function” on page 7-45

• “Accessing profile Function Results” on page 7-46

• “Saving profile Function Reports” on page 7-48

• “Using the profile Function to Change the Time Type Used by the Profiler ”
on page 7-48

7-44

Profiling for Improving Performance

Example: Using the profile Function
This example demonstrates how to run profile:

1 To start profile, type in the Command Window

profile on

2 Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Generate the profile report and display it in the Profiler window. This
suspends profile.

profile viewer

4 Restart profile, without clearing the existing statistics.

profile resume

The profile function is now ready to continue gathering statistics for any
more M-files you run. It will add these new statistics to those generated
in the previous steps.

5 Stop profile when you finish gathering statistics.

profile off

6 To view the profile data, call profile specifying the 'info' argument. The
profile function returns data in a structure.

p = profile('info')

p =
FunctionTable: [10x1 struct]

FunctionHistory: [2x0 double]
ClockPrecision: 3.3333e-010

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

7-45

7 Tuning and Managing M-Files

The FunctionTable indicates that statistics were gathered for 10 functions.

7 To save the profile report, use the profsave function. This function stores
the profile information in separate HTML files, for each function listed in
FunctionTable of p.

profsave(p)

By default, profsave puts these HTML files in a subdirectory of the
current directory named profile_results, and displays the summary
report in your system browser. You can specify another directory name as
an optional second argument to profsave.

Accessing profile Function Results
The profile function returns results in a structure. This example illustrates
how you can access these results:

1 To start profile, specifying the detail and history options, type in the
Command Window.

profile on -detail builtin -history

The detail option specifies that built-ins should be included in the profile
data. The history option specifies that the report include information about
the sequence of functions as they are entered and exited during profiling.

2 Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Stop profiling.

profile off

4 Get the structure containing profile results.

stats = profile('info')
stats =

7-46

Profiling for Improving Performance

FunctionTable: [43x1 struct]
FunctionHistory: [2x754 double]
ClockPrecision: 3.3333e-010

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

5 The FunctionTable field is an array of structures, where each structure
represents an M-function, M-subfunction, MEX-function, or, because the
builtin option is specified, a MATLAB built-in function.

stats.FunctionTable

ans =

41x1 struct array with fields:
CompleteName
FunctionName
FileName
Type
NumCalls
TotalTime
TotalRecursiveTime
Children
Parents
ExecutedLines
IsRecursive
PartialData

6 View the second structure in FunctionTable.

stats.FunctionTable(2)

ans =
CompleteName: [1x79 char]

FunctionName: 'ode23'
FileName: [1x73 char]

Type: 'M-function'
NumCalls: 1

TotalTime: 0.3902
TotalRecursiveTime: 0

7-47

7 Tuning and Managing M-Files

Children: [20x1 struct]
Parents: [0x1 struct]

ExecutedLines: [139x3 double]
IsRecursive: 0
PartialData: 0

7 To view the history data generated by profile, view the FunctionHistory,
for example, stats.FunctionHistory. The history data is a 2-by-n array.
The first row contains Boolean values, where 0 (zero) means entrance into
a function and 1 means exit from a function. The second row identifies the
function being entered or exited by its index in the FunctionTable field. To
see how to create a formatted display of history data, see the example on
the profile reference page.

Saving profile Function Reports
To save the profile report, use the profsave function.

This function stores the profile information in separate HTML files, for each
function listed in the FunctionTable field of the structure, stats.

profsave(stats)

By default, profsave puts these HTML files in a subdirectory of the current
directory named profile_results. You can specify another directory name
as an optional second argument to profsave.

profsave(stats,'mydir')

Using the profile Function to Change the Time Type Used by
the Profiler
By default, the Profiler Summary report is generated using CPU time, as
opposed to real (wall clock) time. This example illustrates how you can direct
MATLAB to use real time instead.

The following image shows the Profiler Summary report as it appears by
default, using CPU time:

7-48

Profiling for Improving Performance

���������	
���
��
	����

You can specify that the Profiler use real time instead, by using the profile
function with the -timer real option, as shown in this example:

7-49

7 Tuning and Managing M-Files

1 If the Profiler is currently open, close the Profiler, and if prompted, stop
profiling.

2 Set the timer to real time by typing the following in the Command Window:

profile on -timer real

3 Run the M-file that you want to profile. This example runs the
Lotka-Volterra predator-prey population model.

[t,y] = ode23('lotka',[0 2],[20;20]);

4 Open the Profiler by typing the following in the Command Window:

profile viewer

The Profiler opens and indicates that real time is being used, as shown in
the following image:

7-50

Profiling for Improving Performance

&�������
��	�
��
��	��

5 To change the timer back to using CPU time:

a Close the Profiler, and if prompted, stop profiling.

7-51

7 Tuning and Managing M-Files

b Type the following in the Command Window:

profile on -timer cpu

c Type the following in the Command Window to reopen the Profiler:

profile viewer

7-52

8

Publishing M-Files

MATLAB® software lets you to format M-files and publish them to various
output types.

Overview of Publishing M-Files
(p. 8-2)

What it means to use text markup
in cells to publish M-files—including
code, comments, and results—to
HTML, XML, LaTeX, Microsoft®

Word, and Microsoft® PowerPoint®.

Formatting M-File Comments for
Publishing (p. 8-18)

Prepare M-file comments for
publishing.

Formatting M-File Code for
Publishing (p. 8-59)

Insert cell breaks into M-file code to
format it for publishing.

Producing Published Output from
M-Files (p. 8-63)

Publish an M-file including
specifying input argument values
and properties for publishing by
using publish configurations.

8 Publishing M-Files

Overview of Publishing M-Files

In this section...

“What Is Meant by Publishing M-Files?” on page 8-2

“Using Cells” on page 8-2

“Process for Publishing M-Files” on page 8-3

“Example of a Published M-File” on page 8-4

“Producing the Formatting for the Example” on page 8-11

What Is Meant by Publishing M-Files?
The MATLAB® product allows you to quickly publish your M-file code in a
variety of formats, including HTML, XML, and LaTeX. If Microsoft® Word or
Microsoft® PowerPoint® applications are on your Microsoft Windows® system,
you can publish to their formats as well. This is useful for creating a report
for describing or sharing your M-file code with others who may or may not
have MATLAB. You can include the following within the published M-file:

• M-file code

• Results of running the code, including output to the Command Window and
figures created or modified by the code

• Formatted commentary on the code, including bulleted and numbered lists,
bold and monospace font, preformatted text, TeX equations, and so on

If you have an active Internet connection, you can watch the Publishing M
Code from the Editor video demo for an overview of the major publishing
features using cells with text markup.

Using Cells
After you write and debug an M-file and are ready to share it with others, you
can insert cells and commentary using text markup features available in
MATLAB. This enables you to publish a formatted M-file. A cell is a section
of M-file code (see “What Are Cells?” on page 6-147). For the purposes of
publishing, a cell can be a section of the code that you want to present as a
titled subsection within the published document, or a portion of code for which

8-2

Overview of Publishing M-Files

you want the results of code evaluation to display as it occurs (for example,
each iteration of a for loop), or both.

Any cell features that you use for evaluating and improving your code, as
described in “Using Cells for Rapid Code Iteration and Publishing Results”
on page 6-147, you also can use for publishing purposes. However, to have
formatted comments in the output document, those comments must appear at
the start of a cell, before any executable code. This requirement might mean
that you need to change cells that you inserted for rapid code iteration. If you
do so, be aware that this changes the cells for evaluation purposes, as well.

“Example of a Published M-File” on page 8-4 shows how the cells and
formatted comments appear when an M-file is published.

Although you typically include the text markup after you write and debug the
code, you can also include text markup as you write the code, or a combination
of the two.

Process for Publishing M-Files
The overall process to publish an M-file using cell features in the Editor is as
follows:

1 Open your M-file in the Editor.

2 Select Cell > Insert Text Markup as described in “Formatting M-File
Comments for Publishing” on page 8-18.

This enables you to specify how M-file comments appear in the published
document. For example, you can specify that comments appear as bold or
monospaced text in the published document.

3 To publish the M-file, do one of the following, as described in “Producing
Published Output from M-Files” on page 8-63:

• To publish the M-file with default publishing properties, select
File > Publish file name. When you use this method, MATLAB
publishes the M-file to HTML in an /html subdirectory of the directory
that contains the M-file you are publishing. However, if you previously
specified custom property values, as described in the next list item, the

8-3

8 Publishing M-Files

last configuration you specified is used and the output type and directory
may be different.

• To specify custom publishing properties, select File > Publish
Configuration for file name > Edit Publish Configurations for
file name, adjust properties, and then click Publish. You can, for
example, choose to include or exclude the executable code from the
published document.

Example of a Published M-File
This section provides an example to demonstrate how an M-file appears when
published. It shows how the M-file appears before and after text markup is
added to cells to achieve the formatted results. This section contains the
following topics:

• “Sample M-File Before Formatting” on page 8-4

• “Published Sample M-File Before Formatting” on page 8-5

• “Published Sample M-File After Formatting” on page 8-7

For detailed information on inserting text markup, see “Formatting M-File
Comments for Publishing” on page 8-18.

Sample M-File Before Formatting

function fourier_demo
t = 0:.1:pi*4;
y = sin(t);
updatePlot(t,y);

% In each iteration of the for loop add an odd
% harmonic to y. As "k" increases, the output
% approximates a square wave with increasing accuracy.

for k = 3:2:9
% Perform the following mathematical operation
% at each iteration:
y = y + sin(k*t)/k;

display(sprintf('When k = %.1f',k));

8-4

Overview of Publishing M-Files

display('Then the plot is:');
updatePlot (t,y)

end

end

% Even though the approximations are constantly
% improving, they will never be exact because of the
% Gibbs phenomenon, or ringing.

function updatePlot(t,x)
% Subfunction to update the plot

cla
plot(t,x)

end

Published Sample M-File Before Formatting
Before you add text markup and cell breaks, publishing fourier_demo.m
includes the last plot generated by the for loop, but otherwise, has little
effect. For example, if you select File > Publish fourier_demo.m, the
published results, as shown in the following figure, are of limited use.

8-5

8 Publishing M-Files

8-6

Overview of Publishing M-Files

Published Sample M-File After Formatting
If you add a few comments for clarity, apply text markup, and insert cell
breaks, as described in “Producing the Formatting for the Example” on page
8-11, the published M-file is transformed as shown in the following three
figures:

• The first figure shows the top of the published document.

• The second figure shows the middle of the published document.

• The third figure shows the bottom of the document.

8-7

8 Publishing M-Files

Add a title for
the document.

Add a table
of contents.

MATLAB code
displays with a
gray background
to distinguish it
from results.

Reduce the size
of the figure in
the document.

8-8

Overview of Publishing M-Files

Make selected
comment text,
such as the k here,
appear in italic.

Publish an
equation using
TeX format.

Include each
iteration of
the for loop
in the document.

8-9

8 Publishing M-Files

8-10

Overview of Publishing M-Files

Producing the Formatting for the Example
The following steps apply text markup to the fourier.m file. (The
unformatted file appears in “Published Sample M-File Before Formatting”
on page 8-5.) When published to HTML, the results appear as shown in
“Published Sample M-File After Formatting” on page 8-7.

For detailed information about each Cell menu option, see “Formatting M-File
Comments for Publishing” on page 8-18.

1 Open a new M-file in the Editor, and then enter the fourier_demo.m code
shown in “Sample M-File Before Formatting” on page 8-4 into the file.

2 Enable cell mode by selecting Cell > Enable Cell Mode.

3 Add an overall title and introduction for the published document:

a Select Cell > Insert Text Markup > Document Title and
Introduction. MATLAB adds the following at the top of the file:

%% DOCUMENT TITLE
% INTRODUCTORY TEXT

The double percent signs (%%) indicate the start of a new cell. A single
percent sign indicates the beginning of a comment line.

b Replace DOCUMENT TITLE with Square Waves from Sine Waves.

c Replace % INTRODUCTORY TEXT with one or more comments about the
overall file, for example:

% The Fourier series expansion for a square-wave is
% made up of a sum of odd harmonics, as shown here
% using MATLAB(R).

The string “(R)” will appear as a registered trademark symbol in the
published document.

d On line 5, insert a blank line for better readability. Notice that the file
now contains two cells. The first cell extends from line 6 to the top of the
file; the second cells extends from line 6 to the bottom of the file. The
cell break at line 6, splits the file into two cells.

8-11

8 Publishing M-Files

4 On line 6, where the second cell begins (as indicated by %%), type a title for
the cell: Add an Odd Harmonic and Plot It.

Notice that when you move from one cell to the next in the file, the
highlighting in the M-file indicates which cell the cursor is currently in.

5 To display the text that describes the purpose of the loop in the published
document as explanatory text, rather than M-file code, insert a cell break
before the explanation. That is:

a Place the cursor at line 12.

b Select Cell > Insert Cell Divider.
Note that the cell that begins on line 12, continues to the end of the
fourier_demo function. If you insert a cell break anywhere within the code
block, MATLAB inserts an implicit cell break at the end of a code block. A
code block is the body of any programming control statement or function.

8-12

Overview of Publishing M-Files

6 Remove the quotation marks around the k at line 14 and present it in italic
instead:

a Delete the quotation marks.

b Select the letter k.

c Select Cell > Insert Text Markup > Italic Text.

Instead of being enclosed in quotation marks, the letter now appears
as _k_.

d To see the effect, click Publish .

7 Because MATLAB publishes output generated by code immediately after
the end of the cell that contains the code, the current cell would cause
MATLAB to include the phrase When k = n Then the plot is: four
times in succession in the published document. In addition, only the final
plot generated by the for loop would be in the published document.

To have MATLAB include every plot generated by the for loop in the
published document, each preceded by the phrase When k = n ..., create
a cell within the for loop, as follows:

a Place the cursor at the end of line 17, after for k = 3:2:9.

b Select Cell > Insert Cell Divider.

Now the current cell includes only the body of the for loop.

8-13

8 Publishing M-Files

c To see the effect, click Publish .

8 Display equations with symbols and Greek characters (such as pi) using
the TeX format. In this example, to create a comment containing a nicely
formatted form of the equation, y = y + sin(k*t)/k, in the published
document, use text markup as follows:

a Position the cursor at the end of the comment on line 20, % at each
iteration.

b Select Cell > Insert Text Markup > TeX Equation.

MATLAB inserts the following lines; the second line is a sample equation
with text markup applied:

%
% $$e^{\pi i} + 1 = 0$$
%

8-14

Overview of Publishing M-Files

The sample equation, which is the text between the set of two dollar
signs ($$), is highlighted.

c Replace the sample equation with the following TeX equation:

y = y + \frac{sin(k*t)}{k}

The three lines that display the TeX equation now appear as follows in
the M-file:

%
% % $$y = y + \frac{sin(k*t)}{k} $$
%

d To see the effect, click Publish .

9 Reduce the size of the published figures by editing the publish configuration
for the file:

a Select File > Publish Configuration for fourier_demo > Edit
Publish Configurations for fourier_demo.m.

The Edit M-File Configurations dialog box opens.

b In the column to the right of Max image width (pixels), double-click
Inf, and type the value 350.

c In the column to the right of Max image height (pixels), double-click
Inf, and type the value 350.

d Click Save As. The Save Publish Settings dialog box opens.

e In the Settings name field, type small_images, and then click Save.

f Click Close.

g To see the effect, click Publish .

10 To create a section header without including a cell break, follow these steps:

a Position the cursor at the beginning of line 33, where the comment %
Even though the approximations are constantly appears.

b Select Cell > Insert Text Markup > Section Title without Cell
Break.

c Replace SECTION TITLE with Note About Gibbs Phenomenon.

8-15

8 Publishing M-Files

d Delete line 34, where the comment % DESCRIPTIVE TEXT appears.

11 Select File > Publish fourier_demo.

The published document, an HTML file, appears in the MATLAB Web
Browser, as shown in “Published Sample M-File After Formatting” on page
8-7.

By default, MATLAB stores the HTML document, fourier_demo.html, and
the associated image files in an /html subdirectory within the directory
containing the source M-file.

See “M-File Code After Text Markup” on page 8-16 for the resulting M-file
code.

M-File Code After Text Markup
After adding text markup, the fourier_demo.m M-file appears as follows.
When you publish the file to HTML, it appears as shown in “Published Sample
M-File After Formatting” on page 8-7.

%% Square Waves from Sine Waves
% The Fourier series expansion for a square-wave is
% made up of a sum of odd harmonics, as shown here
% using MATLAB(R).

%% Add an Odd Harmonic and Plot It
function fourier_demo

t = 0:.1:pi*4;
y = sin(t);
updatePlot(t,y);

%%
% In each iteration of the for loop add an odd
% harmonic to y. As _k_ increases, the output
% approximates a square wave with increasing accuracy.

for k = 3:2:9
%%
% Perform the following mathematical operation
% at each iteration:

8-16

Overview of Publishing M-Files

%
% $$ y = y + \frac{sin(k*t)}{k} $$
%
y = y + sin(k*t)/k;

display(sprintf('When k = %.1f',k));
display('Then the plot is:');
updatePlot (t,y)

end

end

%%% Note About Gibbs Phenomenon
% Even though the approximations are constantly
% improving, they will never be exact because of the
% Gibbs phenomenon, or ringing.

function updatePlot(t,x)
% Subfunction to update the plot

cla
plot(t,x)

end

8-17

8 Publishing M-Files

Formatting M-File Comments for Publishing

In this section...

“Overview of Formatting M-File Comments for Publishing” on page 8-19

“Creating Document Titles and Introductory Text for Publishing an Existing
M-File” on page 8-20

“Specifying Preformatted Text in M-Files for Publishing” on page 8-26

“Specifying Bulleted or Numbered Lists in M-Files for Publishing” on page
8-28

“Specifying Graphics in M-Files for Publishing” on page 8-31

“Specifying HTML Markup Tags in M-Files for Publishing” on page 8-34

“Specifying LaTeX Markup in M-Files for Publishing” on page 8-36

“Specifying TeX Equations and Symbols in M-Files for Publishing” on page
8-39

“Forcing a Snapshot of Output in M-Files for Publishing” on page 8-41

“Specifying Bold, Italic, and Monospaced Text Formats in M-Files for
Publishing” on page 8-42

“Specifying Trademarks in M-Files for Publishing” on page 8-44

“Specifying Links in M-Files for Publishing” on page 8-45

“About Formatted Blocks” on page 8-48

“Cleaning Up Text Markup Before Publishing M-Files” on page 8-53

“Summary of Markup for Formatting M-Files for Publishing” on page 8-56

Note Many examples in this section show the effects of publishing to HTML.
For information on how to publish to HTML, see “Producing Published Output
from M-Files” on page 8-63.

8-18

Formatting M-File Comments for Publishing

Overview of Formatting M-File Comments for
Publishing
This section describes the types of text formatting you can specify for M-files,
so that your published output appears like a polished document, rather than
a text file of code. This enables you to single-source your M-file code with
documentation that describes what the code is doing.

You can format M-file comments in either of the following ways to specify
how the published results will appear:

• Use Cell > Insert Text Markup menu options to format the comments.
This automatically inserts the text markup symbols for you.

• Type the markup symbols directly in the comments; the markup symbols
you enter are the same as the text markup that results when you use the
equivalent menu item. See “Summary of Markup for Formatting M-Files
for Publishing” on page 8-56 for details.

You can use text markup as you create a new file, to mark up an existing
M-file, or a combination of the two. When you use the Cell menu options, the
Editor may insert more comment lines and other markup that you want.
See “Cleaning Up Text Markup Before Publishing M-Files” on page 8-53 for
information on how you can adjust the inserted text when you are done
formatting a file.

Several examples in the formatting sections that follow use this M-file,
sine_wave.m:

% Define the range for x.
% Calculate and plot y = sin(x).
% Display plot in published document.
x = 0:1:6*pi;
y = sin(x);
plot(x,y)
title('Sine Wave', 'FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca, 'Color', 'w')
set(gcf, 'MenuBar', 'none')

8-19

8 Publishing M-Files

Creating Document Titles and Introductory Text for
Publishing an Existing M-File
To specify a document title and introductory text for an M-file, follow these
steps:

1 In the Editor, position the cursor anywhere in an M-file.

2 Select Cell > Insert Text Markup > Document Title and
Introduction. The first three lines of the file appear as shown in the
following image.

3 Replace DOCUMENT TITLE with the cell heading that you want to use; for
example, Plot Sine Wave.

4 Replace INTRODUCTORY TEXT with text that introduces the M-file; for
example, Calculate and plot a sine wave.

5 Insert a blank comment line to increase readability.

8-20

Formatting M-File Comments for Publishing

If you specify the example text suggested in the previous list, then the first
four lines of the resulting M-file appear as follows.

Notice that a horizontal rule, which indicates a cell break, ends the title
and introductory text. When you insert a document title and introduction,
the Editor also adds a cell break in preparation for the first section within
the M-file.

When you publish the M-file, the document title is formatted as a top-level
heading (h1 in HTML), using a large size, bold font; the introductory text
appears as formatted text. The following figure shows the M-file published to
HTML and presented in the MATLAB® Web Browser.

8-21

8 Publishing M-Files

Specifying a Title for the New Section that the Editor Inserts
with the Document Title
When you follow the steps in the previous section, “Creating Document Titles
and Introductory Text for Publishing an Existing M-File” on page 8-20, the
first cell, demarcated in the Editor with the horizontal rule followed by a line
with double percent signs (%%), is not evident in the published file because
the section does not have a title.

To provide a title for the section, insert text after the double percent signs—for
example, Calculate and Plot Sine Wave. When you republish the file to
HTML, it appears in the MATLAB Web Browser as shown in the following
image. Notice that MATLAB automatically inserts the Contents heading and
the link to the section when you publish the file to HTML.

8-22

Formatting M-File Comments for Publishing

The file now has a document title, introductory text, and a first section. You
can add more sections, as described in “Creating New Section Titles” on page
8-23.

Note You can add any comments in the lines immediately following the title.
However, if you want the title to appear as the overall document title, you
cannot add any other text before the next cell (a line starting with %%) .

Creating New Section Titles
To insert a new section title and descriptive text within an M-file, follow
these steps:

1 Position the cursor where you want to insert a new cell—before the title
function shown in the previous example, for instance.

8-23

8 Publishing M-Files

2 Select Cell > Insert Text Markup > Section Title with Cell Break.
The file appears as follows.

3 Replace SECTION TITLE with your title—Modify Plot Properties, for
example.

4 Replace DESCRIPTIVE TEXT with text that describes the cell—Add labels
and set colors., for example.

If you specify the example text suggested in the previous list and “Specifying
a Title for the New Section that the Editor Inserts with the Document Title”
on page 8-22, then the resulting M-file appears as follows.

8-24

Formatting M-File Comments for Publishing

When you publish the M-file to HTML, the section title appears as a heading,
using a medium size, bold font. Comments appear as formatted text in the
published output. The following figure shows the results when you publish
the updated sine_wave.m file to HTML output. Note that the Modify Plot
Properties heading is formatted as an h2.

8-25

8 Publishing M-Files

Specifying Preformatted Text in M-Files for Publishing
MATLAB software enables you to specify preformatted text in an M-file.
Preformatted text appears in monospace font, maintains the white space that
you specify and does not wrap long lines.

To insert preformatted text, follow these steps:

8-26

Formatting M-File Comments for Publishing

1 Position the cursor within the M-file where you want to insert preformatted
text.

2 Select Cell > Insert Text Markup
> Preformatted Text. Four lines of text are inserted, as shown.

3 Being careful not to delete the two blank spaces before the word
PREFORMATTED, replace the words PREFORMATTED and TEXT with
your text, including tabs, spaces, and additional comment lines. For
example:

a Replace PREFORMATTED with Text line 1.

b Insert a tab before TEXT on line 4.

c On the last comment line type Text line 3.

The resulting comments appear as follows.

8-27

8 Publishing M-Files

When you publish the M-file to HTML, the output appears as shown in the
following figure.

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

Specifying Bulleted or Numbered Lists in M-Files for
Publishing
The following steps describe how to specify text markup for a bulleted or
numbered list so as to create a published document that appears as shown in
the following image when you click the Publish button .

8-28

Formatting M-File Comments for Publishing

1 Position the cursor at the end of the line that precedes the location where
you want to add a list. For example, if your M-file contains the following
lines, position the cursor after the colon:

%%
% This cell has three items:

2 Select Cell > Insert Text Markup > Bulleted List or Cell > Insert Text
Markup > Numbered List, depending on the type of list you want.

MATLAB adds four lines of formatted comments to the M-file. The
following figure shows the result when you insert a bulleted list.

8-29

8 Publishing M-Files

If you insert a numbered list, the text markup is the same, except a number
sign (#) indicates a numbered list item.

3 Replace the sample text, ITEM1 and ITEM2, with your text. For example,
replace ITEM1 with A and replace ITEM2 with B.

4 To create a multiline list item, break the line as desired, but do not insert
the list item symbol (* or #) before the second line. For example, to insert
the alphabet as a multiline list item, breaking the line at the letter p, type
the alphabet as shown in the following figure.

8-30

Formatting M-File Comments for Publishing

Notice that the third list item is broken over two comment lines in the
source, yet maintains the formatting of a list, as expected, when published
(as shown at the beginning of this section).

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

Specifying Graphics in M-Files for Publishing
You can insert text markup such that the published document includes an
image that was not generated by the M-file code, as shown in the following
example. (By default, images generated by the M-file code are included in the
published document.)

1 Position the cursor where you want to add a graphic. For example, if your
M-file contains the following lines, position the cursor after the colon:

%% Image Example
% This is a graphic:

2 Select Cell > Insert Text Markup > Image. MATLAB adds text markup,
as shown in the following figure.

8-31

8 Publishing M-Files

3 Replace FILENAME.PNG, with the file name of the graphic you want to
insert, relative to the directory where MATLAB publishes the M-file.

For example, if you want to include the graphic, surfpeaks.jpg, and it is
in the directory into which MATLAB publishes the M-file, then replace
FILENAME.PNG with surfpeaks.jpg.

By default, MATLAB publishes the M-file to an /html subdirectory of the
directory containing the M-file. You can change this directory, referred to
as the output folder, by changing the publish configuration settings, as
described in “Producing Published Output from M-Files” on page 8-63.

If the graphic is not in the directory to which the M-file is published, then
you must specify the location of the graphic file as a relative path from the
location of the published output file, as illustrated in the following table.

Directory
Containing
the M-File

Directory
Where MATLAB
Publishes the
M-File

Image File Location How to Specify the Image in
the M-File Comment

I:/my_mfiles I:/my_mfiles/html I:/my_mfiles/html % <<surfpeaks.jpg>>

I:/my_mfiles I:/my_mfiles/doc I:/my_mfiles/images % <<../images/surfpeaks.jpg>>

8-32

Formatting M-File Comments for Publishing

When you publish the M-file to HTML, the output appears as shown in the
following figure.

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

Creating the surfpeaks.jpg Image
To create the surfpeaks.jpg image used in the preceding example, follow
these steps:

1 Create an html subdirectory in the directory where the M-file that
references the graphic is located.

2 Enter the following in the Command Window:

>> surf(peaks)

A Figure window opens and displays the surfpeaks figure.

8-33

8 Publishing M-Files

3 Save the figure as surfpeaks.jpg in the html subdirectory that you
created in step 1.

Note Unless you reduce the size of surfpeaks.jpg, it will appear larger than
that shown in the previous example.

Specifying HTML Markup Tags in M-Files for
Publishing
You can use the Cell menu to insert HTML code into your M-file. When you
do so, the Editor inserts HTML code for a one-column, two-row table. You can
use the inserted code as a guideline for inserting other HTML code.

Note When you insert text markup for HTML code, the HTML code is
published only when the specified output type is HTML. For example, if
you add HTML markup, but then specify LaTex as the output file format,
MATLAB software does not publish the text enclosed within the HTML
markup. See “Producing Published Output from M-Files” on page 8-63 for
information on specifying the output file format.

To insert the text markup for HTML code, follow these steps:

1 Position the cursor at the end of the comment that precedes the location
where you want to insert HTML code. For example, if the M-file contains
the following lines, position the cursor after the colon:

%% HTML Markup Example
% This is a table:

2 Select Cell > Insert Text Markup > HTML Markup. MATLAB adds
HTML markup, as shown in the following figure.

8-34

Formatting M-File Comments for Publishing

3 Edit the inserted HTML code to specify the HTML code that you want to
use.

If you publish the M-file to HTML and leave the inserted HTML code as is,
MATLAB creates a single-row table with two columns, containing the values
one and two as shown in the following figure.

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

8-35

8 Publishing M-Files

Specifying LaTeX Markup in M-Files for Publishing
You can use the Cell menu to insert LaTex code. You can use the inserted
code as a guideline for inserting other LaTeX code.

Note When you insert text markup for LaTeX code, that code is published
only when the specified output type is LaTeX. For example, if you add LaTeX
markup, but then specify HTML as the output file format, MATLAB software
does not publish the code enclosed within the LaTeX markup. See “Producing
Published Output from M-Files” on page 8-63 for information on specifying
the output file format.

To insert the text markup for LaTeX code, follow these steps:

1 Position the cursor at the end of the comment that precedes the location
where you want to insert LaTeX code. For example, if the M-file contains
the following lines, position the cursor after the colon:

%% LaTeX Markup Example
% This is a table:

2 Select Cell > Insert Text Markup > LaTeX Markup. MATLAB adds
LaTeX markup, as shown in the following figure.

8-36

Formatting M-File Comments for Publishing

3 Edit the inserted LaTeX code to specify the LaTeX code that you want to
use.

If you publish the M-file to LaTeX, and leave the inserted markup text as is,
the Editor opens a new file with the LaTeX code, as shown in the following
figure. (See “Creating a Publish Configuration for an M-File” on page 8-65
for information on specifying LaTeX as the output format for a published
document.)

8-37

8 Publishing M-Files

If you compile the published LaTeX code, it appears as follows.

8-38

Formatting M-File Comments for Publishing

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

Specifying TeX Equations and Symbols in M-Files
for Publishing
You can use the Cell menu to insert TeX equations and symbols. You can use
the inserted code as a guideline for inserting other TeX code.

1 Position the cursor before the line where you want to add an equation or
symbols. For example, if your M-file contains the following lines, position
the cursor after the colon:

%% TeX Equation Example
%
% This is an equation:

2 Select Cell > Insert Text Markup > TeX Equation. Sample markup is
added, as shown in the following figure.

8-39

8 Publishing M-Files

3 Replace the inserted sample markup e^{\pi i} + 1 = 0 with the TeX
equation that you want.

For a list of symbols you can display, and the character sequence to create
them, see the MATLAB Text String property.

If you publish the file to HTML, and leave the inserted sample text markup as
is, the published document appears as shown in the following figure.

If the results are not as you expect, see “About Formatted Blocks” on page 8-48.

8-40

file:///B:/matlab/doc/src/toolbox/matlab/ref/text_props.html%23String

Formatting M-File Comments for Publishing

Forcing a Snapshot of Output in M-Files for Publishing
You can use the Cell menu to insert code that forces a snapshot of output,
such as a figure. This is useful, for example, if you have a for loop that
generates numerous figures and you want to include them all in the published
output, after the for loop end statement.

1 Position the cursor at the end of line where you want to force a snapshot of
the output. For example, if your M-file contains the following lines, position
the cursor after the line containing the imagesc function:

%% Scale magic Data and Display as Image:

for i=1:3
imagesc(magic(i))

end

2 Select Cell > Insert Text Markup > Force Snapshot. The snapnow
function is inserted:

%% Scale magic Data and Display as Image:

for i=1:3
imagesc(magic(i))
snapnow;

end

3 If you publish the file to HTML, the published document resembles to the
following figure. The images in your published document will be larger
than shown in the figure. To resize of images generated by M-file code, you
use the Max image width and Max image height Publish settings, as
described in “Producing Published Output from M-Files” on page 8-63.

8-41

8 Publishing M-Files

Specifying Bold, Italic, and Monospaced Text Formats
in M-Files for Publishing
You can mark up selected strings in the M-file comments so that they appear
in bold, italic, or monospaced text formats when you publish the M-file, as
described in the following sections.

Marking Up Existing Comments with Font Formats
To mark up existing comments, follow these steps:

1 Within a comment, select text that you want to be bold, italic, or
monospaced.

2 Select Cell > Insert Text Markup, and then select Bold Text, Italic
Text, or Monospaced Text.

8-42

Formatting M-File Comments for Publishing

Inserting New Comments with Font Formats
To insert sample text that you will replace with your new comment text,
follow these steps:

1 Select Cell > Insert Text Markup, and then select Bold Text, Italic
Text, or Monospaced Text.

2 Replace the inserted text with the text that you want formatted.

When the Editor inserts sample text, the inserted text appears as follows:

% *BOLD TEXT*
% _ITALIC TEXT_
% |MONOSPACED TEXT|

Example of Font Formats
Suppose your M-file appears as follows.

Format the comments as follows:

1 Select the word Define, and then select Cell > Insert Text
Markup > Bold Text.

2 Select the word range, and then select Cell > Insert Text
Markup > Italic Text.

3 Position the cursor after the word for, insert a space, and then select
Cell > Insert Text Markup > Monospaced Text.

8-43

8 Publishing M-Files

The M-file appears as follows.

4 Replace |MONOSPACED TEXT| with |x|.

If you publish the M-file to HTML, the output appears as shown in the
following figure.

Specifying Trademarks in M-Files for Publishing
If the comments in your M-file include trademarked terms, you can include
text to produce a trademark symbol (™) or registered trademark symbol (®) in
the published output.

• To produce the trademark symbol, enter (TM) in an M-file comment.

• To produce the registered trademark symbol, enter (R) in an M-file
comment.

8-44

Formatting M-File Comments for Publishing

For example, suppose you enter lines in an M-file as shown in the following
image.

If you publish the M-file to HTML, it appears as follows in the MATLAB
Web Browser.

Specifying Links in M-Files for Publishing
You can insert hyperlinked text within an M-file comment, and then publish
the M-file to HTML, XML, or Microsoft® Word. The published document
contains active links to URLs on the Web.

You can include or exclude the URL from the hyperlinked text. You might, for
example, include the URL when you anticipate that users of your published
document might view it in printed format, and therefore need the URL. You

8-45

8 Publishing M-Files

might exclude the URL, when you are confident that users will view your
published document online and therefore be able to use the text as a link.

URLs as Hyperlinked Text
To insert a URL as hyperlinked text, follow these steps:

1 Within a comment, position the cursor where you want to insert the
hyperlinked text. For example, suppose you want to specify a link to more
information about a topic. You might have the following comment within
the M-file:

%%
% For more information, see our Web site:

Position your cursor after the colon (:).

2 Select Cell > Insert Text Markup
> Hyperlinked Text. The Editor inserts the following:

<http://www.mathworks.com The MathWorks>

3 Replace www.mathworks.com with the URL you want to use.

4 Delete the string, The MathWorks.

When you publish the M-file to HTML, the results resemble the following
figure (except the URL in this image is still http://www.mathworks.com).

8-46

Formatting M-File Comments for Publishing

Hyperlinked Text Without Printed URLs
To insert hyperlinked text without a printed URL, follow these steps:

1 Within a comment, position the cursor where you want to insert the
hyperlinked text. For example, suppose you want to specify a link to the
MathWorks Web site. You might have the following lines within your M-file:

%%
% For more information, see the MathWorks Web site.

Select the text you want to replace with a link. For example, select
“MathWorks," as shown in the following figure.

2 Select Cell > Insert Text Markup
> Hyperlinked Text. The Editor replaces the selected text with the

following:

<http://www.mathworks.com MathWorks>

If you publish the M-file to HTML, the results are as shown in the following
figure.

3 Replace www.mathworks.com with the URL that you want to use.

8-47

8 Publishing M-Files

4 Replace MathWorks with the text that you want to appear as the
hyperlinked text.

Effect of Using Hyperlinked Text from the MATLAB® Command
Window
You cannot use statements that display hyperlinked text in the MATLAB
Command Window to create hyperlinked text in a published M-file. If you try,
the published document shows the code rather than the hyperlink.

For example, suppose you enter the following code in the Command Window:

disp('Link to MathWorks')

When you press Return, the Command Window displays a link to the
MathWorks Web site:

However, if you include the preceding disp statement in an M-file that
you publish, the HTML tag and the included text appear in the published
document, rather than a link:

disp('Link to MathWorks')

Instead, use one of the methods described in these sections:

• “URLs as Hyperlinked Text” on page 8-46

• “Hyperlinked Text Without Printed URLs” on page 8-47

About Formatted Blocks
Multiple contiguous lines of comments immediately following a cell break
are referred to as “descriptive” or “introductory text”. Within these lines of
comments, empty lines create formatted blocks. Formatted blocks control how
comments appear within the final published document.

Specify each of the following items as a formatted block to achieve the
intended results in the published document:

8-48

Formatting M-File Comments for Publishing

• Preformatted text

• Bulleted and numbered lists

• Graphics

• HTML markup

• LaTeX markup

• TeX equations

The following sections provide general information on formatted blocks:

• “Understanding How Formatted Blocks are Demarcated” on page 8-49

• “Understanding How Formatted Blocks Work” on page 8-49

Understanding How Formatted Blocks are Demarcated
A formatted block starts on the first comment line after one of the following:

• A cell break

• A blank comment line (a percent sign with no other characters on the line)

A formatted block ends on the last comment line before one of the following:

• A cell break

• A blank comment line

• Any line of uncommented M-file code

Understanding How Formatted Blocks Work
A comment is part of a formatted block if, on the first line of the block there
are two spaces between the single percent sign (%) and the next character.
Any number of white spaces can precede the percent sign. That is, the percent
sign can be indented. The following two images demonstrate the difference
between blocks that are and are not formatted:

• The first image show the M-file source code.

• The second image shows the M-file published to an HTML document.

8-49

8 Publishing M-Files

Two spaces on the
first line of the
block ...

... therefore, this list
will be formatted.

One space on the
first line of the
block ...

... therefore, this
list will not be
formatted.

One space on the
first line of this
block ...

Two spaces on the
first line of an
indented block ...

... therefore, this
tab will not be
published.

... therefore, this
tab will be
published.

8-50

Formatting M-File Comments for Publishing

8-51

8 Publishing M-Files

If you want, you can experiment with the code presented in the previous
images by copying and pasting the following comments into an M-file in the
Editor:

%% Formatted Block Demonstration
% This M-file shows the difference between blocks
% that are and are not formatted.
%
%% Block That Is Formatted
% This first block begins on line 6 of the M-file code.
% Because there are two spaces between the percent sign
% and the next character on line 6, this block is
% formatted.
% Here is a list:
% * Item one
% * Item two
%
%% Block That Is Not Formatted
% This second block begins on line 15 of the M-file code.
% Because there is only one space between the percent sign
% and the next character on line 15, this block
% is NOT formatted.
% Here is a list:
% * Item one
% * Item two
%
%% Text That Contains Formatted and Unformatted Blocks
% This third block begins on line 24 of the M-file code.
% Because there are two spaces between the percent sign
% and the next character on line 24, this block is
% formatted. Note that the 25th and subsequent lines
% in this block do not have two spaces between the single
% percent sign and the next character on the line. The first
% line within the block determines whether or not the
% entire block is formatted.
%
% This fourth block begins on line 33 of the M-file code.
% It is not a continuation of the third block because a
% blank comment line precedes line 33.
% Even though a tab exists on this line in the

8-52

Formatting M-File Comments for Publishing

% M-file code, its spacing is not preserved in the
% published document; the tab occurs in the middle
% of a block that is not formatted.
%

%% Indented Text
% This fifth block begins on line 42 of the M-file
% code. It is formatted because there are two
% spaces between the percent sign and the first
% character on line 42. Indenting a line has
% no effect on preformatting and is not presented
% in the published document as indented.

Cleaning Up Text Markup Before Publishing M-Files
When you insert text markup into an existing M-file using the Cell menu
options, you might find that more comment lines than you need are inserted.
You can adjust the inserted comments as needed for your purposes. If you
delete blank comment lines that the Cell menu options insert there may be
unintended consequences, however. See “Specifying Preformatted Text in
M-Files for Publishing” on page 8-26 for details.

The following example shows how you might use Cell menu options with
an existing M-file.

Suppose an M-file currently appears in the Editor as shown in the following
image.

8-53

8 Publishing M-Files

If you position the cursor anywhere within the file and select Cell > Insert
Text Markup > Document Title and Introduction, the M-file looks like
the following.

8-54

Formatting M-File Comments for Publishing

The file already contains a comment with introductory text, so you can delete
the % INTRODUCTORY TEXT line and the double percent sign (%%) line, so the
code appears as follows.

8-55

8 Publishing M-Files

Summary of Markup for Formatting M-Files for
Publishing
The following two tables provides a summary of the text markup that you can
type into an M-file to achieve the same results as using the Cell > Insert
Text Markup menu options. These tables are particularly useful if you are
not using the MATLAB Editor, or if you do not want to use menus to apply
formatting. For a description of the Cell menu options, see “Formatting
M-File Comments for Publishing” on page 8-18.

Summary of Markup Not Requiring a Formatted Block
This table summarizes markup that does not require that it be included
within a formatted block.

8-56

Formatting M-File Comments for Publishing

Result in Published
Document

Example of Corresponding M-File Markup

Document title and
introduction %% DOCUMENT TITLE

% INTRODUCTORY TEXT

Section title and
description %% SECTION TITLE

% DESCRIPTIVE TEXT

Section title without
cell break %%% SECTION TITLE

% DESCRIPTIVE TEXT

Cell break without
title or description %%

Bold text
% *BOLD TEXT*

Italic text
% _ITALIC TEXT_

Monospaced text
% |MONOSPACED TEXT|

Hyperlinked text % <http://www.mathworks.com MathWorks>

Trademark symbol
% TEXT(TM)

Registered trademark
symbol % TEXT(R)

Code to force a
snapshot of the
current output

snapnow;

Summary of Markup Requiring a Formatted Block
This table summarizes markup that requires that it be included within a
formatted block. See “About Formatted Blocks” on page 8-48 for details.

8-57

8 Publishing M-Files

Result in Published
Document

Example of Corresponding M-File
Markup

Image
% <<FILENAME.PNG>> %

Bulleted list
% * ITEM1
% * ITEM2

Numbered list
% # ITEM1
% # ITEM2

HTML markup
% <html>
% <table border=1><tr>
% <td>one</td>
% <td>two</td></tr></table>
% </html>

LaTeX markup
% <latex>
% \begin{tabular}{|r|r}
% \hline n&$n!$\\
% \\hline 1&1\\ 2&2\\ 3&6\\
% \\hline
% \end{tabular}
% </latex>

TeX equation
% $$e^{\pi i} + 1 = 0$$

8-58

Formatting M-File Code for Publishing

Formatting M-File Code for Publishing

In this section...

“Overview of Formatting M-File Code for Publishing” on page 8-59

“Example of Published M-File Output” on page 8-59

Overview of Formatting M-File Code for Publishing
This section describes ways to control how output that the MATLAB® software
generates when it evaluates executable M-file code appears in a published
document. For example, you can direct MATLAB to include the last, or all
plots generated by a for loop. You can interweave comments, code, and
output throughout your published document to draw your readers’ attention
to certain areas of interest.

The tool you use to specify how output is presented in the document is the
same tool you use to specify document titles and section headers; namely the
double percent sign (%%) which is referred to as a cell break or cell divider.
When you insert a cell break into a file, it directs MATLAB to publish the code
and output contained in the cells created by the divider. Because MATLAB
considers the entire M-file to be a cell, when you insert a cell break, MATLAB
considers the file to contain two cells; one above the cell break and one below.
The examples in the remaining topics demonstrate how you can use this
behavior to control the output produced by M-file code.

Example of Published M-File Output
This section provides an example to demonstrate how an M-file appears when
published. It demonstrates how the published example file appears before
and after cell breaks are added to achieve the published results.

Sample M-File Before Inserting Cell Breaks in Code
Suppose your M-file contains the following code:

%% Scale magic Data and Display as Image

for i=1:3
imagesc(magic(i))

8-59

8 Publishing M-Files

end

The following image illustrates how the code presented appears when you
publish it to HTML. The plot in the figure is smaller than it appears if you
publish the M-code using factory default settings. For information on setting
publishing properties for images, see “Producing Published Output from
M-Files” on page 8-63.

Notice that the published document displays the plot after the end of the for
loop and that only the last plot generated by the code is included.

Sample M-File After Inserting Cell Breaks in Code
By placing cell breaks within a loop, you can display the output generated
by M-file code when iterating a loop.

To include the plot generated by each iteration of the loop in the published
document, insert a cell break after the opening for statement. Position the

8-60

Formatting M-File Code for Publishing

cursor at the end of the first line of the for loop, and then select Cell > Insert
Cell Divider.

The code now appears like this:

%% Scale magic Data and Display as Image

for i=1:3
%%
imagesc(magic(i))

end

Now when you publish the code to HTML, it appears as follows. The plots
in the figure are smaller than they appear if you publish the M-code using
factory default settings. For information on setting publishing properties for
images, see “Producing Published Output from M-Files” on page 8-63.

Notice that the published document displays the plot within the for loop code.
You can also use text markup for similar results with figures. See “Formatting
M-File Code for Publishing” on page 8-59 for details.

8-61

8 Publishing M-Files

8-62

Producing Published Output from M-Files

Producing Published Output from M-Files

In this section...

“About Producing Published Output” on page 8-63

“Creating a Publish Configuration for an M-File” on page 8-65

“Specify and Save Publish Configuration Settings” on page 8-69

“Specify Values for the Publish Settings Property Table” on page 8-73

“Creating a Template for Typical Publish Settings” on page 8-84

“Run an Existing Publish Configuration” on page 8-87

“Create and Run Multiple Publish Configurations for an M-File” on page
8-89

“About the publish_configurations.m File” on page 8-99

“Find Publish Configurations” on page 8-100

“Remove Publish Configurations” on page 8-100

“Reassociate and Rename Publish Configurations” on page 8-100

About Producing Published Output
Once you have formatted an M-file for publishing, as described in “Formatting
M-File Comments for Publishing” on page 8-18 and “Formatting M-File Code
for Publishing” on page 8-59 you are ready to publish it. The easiest method
for publishing an M-file is to use factory defaults. This method is appropriate
if your M-file requires no input arguments and you want to publish to HTML.
However, if your M-file requires input arguments, or you want to specify
preferences for publishing, such as the output directory, output format, image
format, and so on, you need to specify custom property settings.

Publishing M-Files Using No Input Arguments and Factory
Default Settings
To publish a script M-file, or a function M-file that requires no input
arguments:

1 Open the file in the Editor.

8-63

8 Publishing M-Files

2 Click the Publish button on the Editor toolbar.

By default, the Editor publishes the file using factory default settings. Factory
default settings specify that the output file format is HTML, that the M-code
is evaluated and included in the published output file, and so on.

If the file is neither in a directory on the search path, nor in the current
directory, a dialog box opens and presents you with options that allow you to
publish the file. You can either change the current directory to the directory
containing the file, or you can add the directory containing the file to the
MATLAB® search path.

If the file has unsaved changes, publishing it from the Editor automatically
saves the changes before publishing.

Using Publish Configurations to Publish M-Files with Input
Arguments or Custom Settings
Using a publish configuration, you can specify custom settings, including
input arguments for a function M-file in the Editor. You can associate multiple
publish configurations with an M-file for different publish settings, input
arguments, or both. MATLAB saves the configuration between sessions.

For example, the function collatzplot_new.m, which computes and plots the
Collatz sequence for any given positive integer, requires you to specify the
integer as an input value. You cannot simply publish collatplot_new.m
because the input value is not defined. A publish configuration enables you
to publish collatzplot_new(specific value).

You can also use publish configurations to provide preparatory or setup
information prior to publishing an M-file, whether it takes input arguments
or not.

Note M-file publish configurations use the base MATLAB workspace.
Therefore, a value that you assign to a variable in an M-file publish
configuration overwrites the value for that variable (assuming it currently
exists) in the base workspace.

8-64

Producing Published Output from M-Files

Function Alternative to Publishing
From the Command Window, execute the publish function to run the M-file
and publish the results. See the publish function reference page for options
you can set.

Creating a Publish Configuration for an M-File
Follow these steps to create a publish configuration for an M-file in the
Editor. The example in this section shows how to create and use a publish
configuration to specify input arguments to a function M-file.

These steps specify Editor toolbar buttons, but you can also use equivalent
items in the File menu.

1 Open the file that you want to publish in the Editor. This example uses
the code that follows. This code is similar to the sine_wave.m file, after
it has been formatted as described in “Formatting M-File Comments for
Publishing” on page 8-18, but it is slightly altered to make it a function
M-file. Save the code as sine_wave_f.m

%% Plot Sine Wave
% Calculate and plot a sine wave.

%% Calculate and Plot Sine Wave
% Calculate and plot |y = sin(x)|.

function sine_wave_f(x)

y = sin(x);
plot(x,y)

%% Modify Plot Properties

title('Sine Wave', 'FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca, 'Color', 'w')
set(gcf, 'MenuBar', 'none')

8-65

8 Publishing M-Files

2 Click the down arrow next to the Publish button on the Editor
toolbar, and click Edit Publish Configuration for file name, where file
name in this example is sine_wave_f.m.

The Edit M-File Configurations dialog box opens, with the default publish
configuration template for sine_wave_f.m, as shown in the following figure.

8-66

Producing Published Output from M-Files

8-67

8 Publishing M-Files

3 In the Publish configuration name field, type a name for the publish
configuration, or accept the default name.

If you expect to create multiple configurations for an M-file, assign each a
name that helps you identify the configuration. In this figure, the default
name of the configuration is sine_wave_f.

4 In the MATLAB expression field, type the expression that you want the
Editor to evaluate when it publishes the M-file. In this example, delete the
commented statements and replace them as shown in the following figure.

You can modify the statements in the MATLAB expression area of the
dialog box, and then click Publish to see the results of the changes. If
you clear the MATLAB expression area, MATLAB publishes the M-file
without evaluating any code. This is equivalent to setting the Evaluate
code property in the Publish settings properties table to false.

5 In the Publish settings properties table, change the property values if you
do not want to use the current settings.

You can modify the property settings, and then click Publish to see the
results of the changes.

See “Specify and Save Publish Configuration Settings” on page 8-69 for
details.

6 Do one of the following:

• To publish the file using the settings and MATLAB expression that you
have specified, click Publish.

8-68

Producing Published Output from M-Files

For this example MATLAB creates the following files in
I:\my_matlab_files\my_mfiles\html, which is a subdirectory in the
directory where sine_wave_f.m is located:

– A published document file, sine_wave_f.html

– A thumbnail file for the last image generated by the M-file code,
sine_wave_f.png

– Image files created by the executable M-file code, sine_wave_f_##.png

• To create another publish configuration for the same M-file, click the

plus button , and then select Publish Configuration.

See “Create and Run Multiple Publish Configurations for an M-File” on
page 8-89 for details.

• To close the Edit M-File Configurations dialog box, click Close. MATLAB
saves the configuration and its association with the M-file.

After creating a configuration, you can view the MATLAB expression and
use the configuration to publish the M-file without opening the Edit M-File
Configurations dialog box. See “Run an Existing Publish Configuration” on
page 8-87 for details.

Specify and Save Publish Configuration Settings
This section describes how to specify new publish settings for a configuration.
Publish settings enable you to specify the directory to which a published file
is saved, how images generated by the M-code are captured and included in
the published document, and so on.

1 If the Edit M-File Configurations dialog box is not already open, click the
down arrow on the Publish button and then click the configuration
that you want to change.

This example uses the sine_wave_f publish configuration as described in
“Creating a Publish Configuration for an M-File” on page 8-65.

2 View the properties table below the Publish settings field to see the
current publish property values.

8-69

8 Publishing M-Files

3 For information about a property, click the property name. A brief
description of that property displays below the publish settings property
table. For example, if you click Catch error, the dialog box appears as
shown in the following image.

Description of Catch error property

4 Optionally, you can change publish setting values by clicking in the column
to the right of the property name and then entering or selecting a property
value. This example changes Max image width and Max image height
to 400.

8-70

Producing Published Output from M-Files

The Editor marks each property that you change with a dot () and adds the
string, (modified), next to User Default in the Publish settings field.

See “Specify Values for the Publish Settings Property Table” on page 8-73
for information about the various properties you can set.

Indicates that one or more properties
differ from the saved User Default
property settings.

Indicates that these properties’ values differ from the settings
saved in the User Default publish settings.

5 Click Publish to preview the publication of the M-file that is open in the
Editor using the new settings.

8-71

8 Publishing M-Files

6 When you are satisfied with the results, click Save As.

The Save Publish Options dialog box opens and displays the names of all
the currently defined publish settings. By default the following publish
settings are installed with MATLAB:

• Factory Default

The MathWorks installs this named set of publishing properties for you
to get started with publishing documents. It enables you to quickly
publish an M-file to HTML and view the results. You can use it to test
the effect of changing settings on the published output. If you determine
that the test settings produce undesirable results, you can restore the
Factory Default publish settings by selecting it from the Publish
settings drop down list.

• User Default

The MathWorks™ installs this named set of publishing properties in
anticipation that you will have a set of publish properties that are
common to most or all of your publishing configurations. Initially,
User Default settings are identical to those in the Factory Default.
See “Creating a Template for Typical Publish Settings” on page 8-84
for an example of changing the User Default settings to best suit your
publishing needs.

7 In the Settings Name field, enter a meaningful name for the settings. For
example, reduce_image. Then click Save.

You can now use the reduce_image publish settings with other publish
configurations.

You can also overwrite the publishing properties saved in an existing
publish settings name by selecting it from the Publish settings drop-down
list, and then clicking Overwrite. However, you cannot overwrite the
Factory Default publish settings.

8-72

Producing Published Output from M-Files

Note When you overwrite a publish settings name, configurations that
currently specify that publish settings name do not have their publish
properties updated to use the new settings. Instead, their properties that
now have different values from the updated publish settings are marked
with a dot.

8 In the Edit M-File Configurations dialog box, do one of the following:

• Click Publish to publish the M-file that is open in the Editor using
the new settings.

• Click Close to close the dialog box.

Specify Values for the Publish Settings Property Table
The sections that follow describe each of the publish settings properties
that you can adjust to fit your needs when you create or update a publish
configuration. To access a publish configuration open the M-file for which you
want create or update a publish configuration, and then select File > Publish
Configuration for file name > Edit Publish Configurations for file
name.

You can set or adjust values for the following properties:

• “Output file format Property” on page 8-74

• “Output folder Property” on page 8-74

• “Cascading style sheet Property” on page 8-74

• “Figure capture method Property” on page 8-75

• “Image format Property” on page 8-75

• “Use new figure Property” on page 8-75

• “Max image width Property” on page 8-81

• “Max image height Property” on page 8-81

• “Create thumbnail Property” on page 8-82

• “Include code Property” on page 8-82

8-73

8 Publishing M-Files

• “Evaluate code Property” on page 8-82

• “Catch error Property” on page 8-84

• “Max # of output lines Property” on page 8-84

Output file format Property
Select one of the choices from the drop-down list to publish the document
to one of the following file formats:

• html — Publishes an HTML document.

• xml — Publishes an XML document.

• latex — Publishes a LaTeX document, which you can use to create a PDF
document, if you want.

• doc — Publishes a Microsoft® Word document, if your system is a PC.

• ppt — Publishes a Microsoft® PowerPoint® document, if your system is a
PC.

MATLAB names the published file with the same name as the publish
configuration that produced it and stores it, along with images that MATLAB
generates from M-file code, in the directory specified with the Output folder
property.

Output folder Property
Type the full path of the directory to which you want MATLAB to publish
the output document and its associated image files. For example, if
your M-file is in I:\my_matlab_files\my_mfiles, you might specify
I:\my_matlab_files\my_word_files if you are creating a publish
configuration for documents that you publish to Word.

Cascading style sheet Property
Type the full path of the cascading style sheet (CSS), also referred to as an
Extensible Stylesheet Language (XSL) style sheet, that you want to use
when you specify the Output file format as HTML, XML, or LaTeX. If

8-74

Producing Published Output from M-Files

you leave this field blank, MATLAB uses a default stylesheet installed with
the MATLAB software.

Figure capture method Property
To create the images produced when publishing M-files, select one of the
following options:

• getframe — MATLAB uses the getframe function to capture figures for
inclusion in the published document. Any published image identically
matches the image you see on the screen. However, if another open
application window is partially on top of the image, MATLAB includes
that second image in the capture.

• print — MATLAB uses the print function to capture figures for inclusion
in the published document. The published image never includes portions of
another window, but in some cases, the published image does not exactly
match what appears on the screen. For example, if the EraseMode plot
property is set to none, an image published with the figure capture method
set to print does not exactly match the screen image.

Image format Property
Select the file type for images produced when publishing M-files. The image
file types available in the drop-down list depend on the Figure capture
method you specify.

Use new figure Property
Set to true if you want MATLAB to create a new Figure window with a
white background and at the default size before publishing if the M-file code
generates a figure. After publishing finishes, MATLAB closes the Figure
window.

To use a figure with different properties for publishing, set this property to
false. Then open a Figure window, change the size and background color,
for example, and then publish. Figures in your published document use the
characteristics of the figure you opened before publishing.

8-75

8 Publishing M-Files

Note This preference applies to executable M-file code that generates a
figure. It does not apply to figures included in a published document using the
Cell > Insert Text Markup > Image menu option.

The following example demonstrates how to specify new Figure window
properties for published images by setting the Use new figure publish
settings property to false:

1 Create sine_wave_f.m, as described in “Creating a Publish Configuration
for an M-File” on page 8-65.

2 Create a Figure window by saving the following code in an M-file and then
running it:

function createfigure
%CREATEFIGURE

% Create figure
figure1 = figure('Name','purple_background',...
'Color',[0.4784 0.06275 0.8941]);
colormap('hsv');

% Create subplot
subplot(1,1,1,'Parent',figure1);
box('on');

% Create xlabel
xlabel({''});

% Create title
title({''});

The following figure appears.

8-76

Producing Published Output from M-Files

3 Reduce the size of the figure by dragging and dropping the edges. For
example:

8-77

8 Publishing M-Files

4 Do not close the window.

5 Make sine_wave_f.m the active file in the Editor, and then select
File > Publish Configurations for sine_wave_f.m > Edit Publish
Configurations for sine_wave_f.m.

6 In the Publish settings drop-down list, select Factory Default.

7 If you have previously set Publish settings for sine_wave_f.m, the
Change Publish Settings dialog box opens. Click Change to Factory
Default..

8 In the Publish settings properties table, set Use new figure to false.

8-78

Producing Published Output from M-Files

9 Click Publish. MATLAB publishes sine_wave_f.m as shown in the
following figure.

8-79

8 Publishing M-Files

8-80

Producing Published Output from M-Files

Max image width Property
Overwrite the current value to restrict the width of images in the published
output. Note the following about this property:

• It applies only to images that the M-code generates. It does not apply to
images you include using the method described in “Specifying Graphics in
M-Files for Publishing” on page 8-31.

• It applies when you select an Image Format property setting that is a
bitmap, such as .png or .jpg.

• It does not apply when the Image Format property setting is a vector
format, such as .eps.

• The image’s aspect ratio is maintained. If you restrict both height and
width using Max image width and Max image height properties to
resize the image, then MATLAB maintains the aspect ratio by using the
maximum you specified for one dimension and something less than the
maximum for the other dimension.

Max image height Property
Overwrite the current value to restrict the height of images in the published
output. Note the following about this property:

• It applies only to images that the M-code generates. It does not apply to
images you include using the method described in “Specifying Graphics in
M-Files for Publishing” on page 8-31.

• It applies when you select an Image Format property setting that is a
bitmap, such as .png or .jpg.

• It does not apply when the Image Format property setting is a vector
format, such as .eps.

• The image’s aspect ratio is maintained. If you restrict both width and
height using Max image width and Max image height properties to
resize the image, then MATLAB maintains the aspect ratio by using the
maximum you specified for one dimension and something less than the
maximum for the other dimension.

8-81

8 Publishing M-Files

Create thumbnail Property
Set to true to direct MATLAB to create a thumbnail image if the Image
Format preference is a bitmap, such as .png or .jpg. For example, you can
use this thumbnail to represent your M-file in HTML pages. If you create
your own demos and include them in the Help browser Demos pane via a
demos.xml file, MATLAB automatically creates a list of your demos that
includes the thumbnail for each.

Set to false to direct MATLAB to not create a thumbnail image.

Include code Property
Set to true to have MATLAB include the M-file code in the published
document. Set to false to the have MATLAB exclude the code from all output
types except HTML. When the output type is HTML, MATLAB inserts the
M-file code in the output file as an HTML comment. Therefore, when viewed
in a Web browser, for example, the M-file code is not displayed.

Use the MATLAB grabcode function if you want to extract the M-file code
from the published HTML file.

For example, suppose you publish
I:/my_matlabfiles/my_mfiles/sine_wave_f.m to HTML using a publish
configuration with the Include code property set to false. If you share the
published document with colleagues, they can view the published document in
a Web browser. If your colleagues want to see the M-file code that generated
the published document, they can issue the following command from the
directory containing sine_wave_f.html:

grabcode('sine_wave_f.html')

MATLAB opens the M-file code that created sine_wave_f.html in the Editor.

See “Creating a Publish Configuration for an M-File” on page 8-65 for the
sine_wave_f.m code.

Evaluate code Property
Set to true to direct MATLAB to evaluate the M-file code while publishing
the results and include the results in the output document.

8-82

Producing Published Output from M-Files

Set to false, to direct MATLAB to not evaluate the code nor include code
results when publishing an M-file.

Because MATLAB does not evaluate the code, there might be invalid code in
the M-file. Therefore, you might not want to set this property to false without
first running the M-file.

For example, suppose you include comment text, Label the plot, in an
M-file, but forget to preface it with the comment character. If you publish the
document to HTML, and set Evaluate code to true, the published document
includes the error, such as shown in the following figure.

Use this property with the Max # of output lines property to specify the
maximum number of lines you want to include in the output. This property is

8-83

8 Publishing M-Files

helpful when you have code that produces a lot of output and you only want to
include a sample of it in the published document.

Catch error Property
Set to true to direct MATLAB to publish and include the error message text
in the published document if an error occurs when it evaluates the code.

Set to false to direct MATLAB to terminate the publish operation if an error
occurs when it evaluates the code.

This property has no effect if you set the Evaluate code property to false.

Max # of output lines Property
Type a value to specify the maximum number of output lines that you want to
include after each cell break in the published document.

For example, suppose your M-file code includes a loop, such as the following:

for n = 1:100
disp(x)

end;

If you publish the document, then by default, all 100 lines of the output
generated by the preceding code is included in the published document. If you
want to include a smaller representative sample of the output, set Max # of
output lines to a small value, such as 10.

Creating a Template for Typical Publish Settings
Use the User Default publish settings installed with MATLAB to create a
template for all or most of your publish configurations.

Initially, the User Default publish setting has the same property values as
Factory Default publish settings. Update and save your most commonly
used property settings to avoid having to reset the same settings each time
you create a new publish configuration.

8-84

Producing Published Output from M-Files

For example, suppose that you frequently publish your M-files using the
factory installed User Default settings, with a few exceptions. You want to
change the factory installed User Default settings to:

• Save the published document files to
I:\my_matlab_files\my_published_mfiles

• Use the getframe figure capture method

• Terminate publishing if an error occurs while the M-file code is being
evaluated

Update the User Default publish settings, as follows:

1 If the Edit M-File Configurations dialog box is not already open, click the
down arrow on the Publish button , and then click the configuration
for which you want to set the properties as described in the preceding list.

2 From the Publish settings drop-down list, select User Default.

If the Change Publish Settings dialog box opens, click Change to User
Default.

3 Adjust the values in the publish settings properties table, so that the
Publish settings appear as shown in the following figure.

8-85

8 Publishing M-Files

4 Click Save As.

The Save Publish Settings dialog box opens.

5 In the Publish settings drop-down list, select User Default, and then
click Overwrite.

The User Default publish settings are now saved with the specified
property values.

Now, suppose you want to create a publish configuration using all the same
settings, except you want to publish your M-file to a Microsoft Word document.
Follow these steps:

1 In the Editor, open the M-file that you want to publish to a Word document.

8-86

Producing Published Output from M-Files

2 Click the down arrow next to the Publish button on the Editor toolbar
and click Edit Publish Configuration for file name, where the file
name is the name of the file that you want to publish to a Word document.

The Edit M-File Configurations dialog box opens.

3 If you want, adjust the MATLAB expression.

4 Notice that the Publish settings are set to User Default and the publish
settings properties table contains the values you set in the preceding list
of steps.

5 Change the Output file format from html to doc.

6 Click Save As.

The Save Publish Settings dialog box opens.

7 In the Settings name box, type a name for the new group of publish
settings. For example, WordDefault.

8 Click Save.

Now you can use any one of the following as the publish settings, or the basis
for new publish settings, for the next publish configuration you create:

• Factory Default

• Your customized User Default

• Word Default

• Any other publish settings that you create and save with a unique name

Run an Existing Publish Configuration
After creating a publish configuration, you can run the configuration without
opening the Edit M-File Configurations dialog box, as follows:

1 In the Editor toolbar, click the down arrow on the Publish button , and
position the pointer on a publish configuration name. MATLAB displays a
ToolTip showing the publish configuration’s MATLAB expression so you

8-87

8 Publishing M-Files

can see what will be evaluated when you publish the M-file using the
named configuration.

2 To use the publish configuration, select a configuration name. MATLAB
publishes the M-file using the MATLAB expression you specified in the
publish configuration. For example, if you select sine_wave_f, MATLAB
sets the value of the input argument, x, to 0:1:6*pi and passes it to the
M-file function before evaluating and publishing it. (To see how to set the
MATLAB expression, see “Creating a Publish Configuration for an M-File”
on page 8-65.)

8-88

Producing Published Output from M-Files

Create and Run Multiple Publish Configurations for
an M-File
You can create multiple publish configurations for a given M-file. You might
do this to publish the M-file with different values for input arguments,
with different publish setting property values, or both. Create a named
configuration for each purpose, all associated with the same M-file. Then,
any time you publish the M-file, you can chose and run whichever particular
publish configuration that you want. For example, for sine_wave_f(x) you
might use different values for x and adjust publishing properties for these
purposes:

• For reviewing with colleagues, publish the document to Word. Use publish
settings to adjust the size of images generated by the code so they are not
cropped in the document. Evaluate and include the code, as well as any
errors generated by the code in the Word document.

• For inclusion in a blog, publish the document to HTML. Use publish
settings to specify an argument value and set publishing properties to
evaluate and include the code, but exclude errors generated by the code
from the output published to HTML.

• For presentation at a meeting, use the same settings as used for publishing
to the blog, but publish to Microsoft PowerPoint.

The following sections provide instructions for creating multiple configurations
for sine_wave_f.m. Each set of steps assumes you have completed the
previous set of steps. When you complete all three you will have three publish
configurations, one for each output format described in the previous list.

• “Example of Publishing sine_wave_f.m to Microsoft® Word” on page 8-89

• “Steps for Publishing sine_wave_f.m to HTML ” on page 8-93

• “Steps for Publishing sine_wave_f.m to Microsoft® PowerPoint®” on page
8-97

Example of Publishing sine_wave_f.m to Microsoft® Word
The following steps provide an example of settings you might use when you
want to publish an M-file to Word. This example uses the sine_wave_f.m file,
the code for which is presented in “Creating a Publish Configuration for an
M-File” on page 8-65.

8-89

8 Publishing M-Files

1 In the Editor, open sine_wave_f.m.

2 Select File > Publish Configuration for sine_wave_f.m > Edit
Publish Configurations for sine_wave.m.

3 Select sine_wave_f in the list of M-files and configurations, click the Add

button , and then select Publish Configuration.

MATLAB creates a new publish configuration, sine_wave_f_2.

8-90

Producing Published Output from M-Files

4 Rename sine_wave_f_2 to sine_wave_word, and replace the default
template expression with the following code:

x = 0:1:rand*pi;
sine_wave_f(x)

5 Change the values for Publish settings, as follows so that the M-file is
published to a Word document, including the code, its output and any
errors the code may generate. The maximum values for the image height
and width are set so that the images are not cropped in the Word document:

a For Output file format, select doc from the drop-down list.

b For Image format, select jpeg from the drop-down list.

8-91

8 Publishing M-Files

c For Max image width, type 400.

d For Max image height, type 400.

6 Click Publish to test how the settings affect the Word document.

You can continue to test and change publish settings until you achieve
the results that you want.

Tip In addition to testing that your M-file code evaluates as expected and
publishes to Word as expected, you might run the spelling and grammar
checker in Word to be sure that the comments in your M-file do not contain
typographical or grammatical errors.

7 Click Save As. In the Save Publish Settings dialog box, in the Settings
name field, type word_settings, and then click Save.

8-92

Producing Published Output from M-Files

Steps for Publishing sine_wave_f.m to HTML
These steps provide an example of creating a configuration for sine_wave_f.m,
that publishes the M-file to HTML. You might do this to publish output for
inclusion in a blog, for example.

1 If it is not currently open, open the Edit M-File Configurations dialog box.

8-93

8 Publishing M-Files

2 Select sine_wave_word in the list of M-files and configurations on the
left side of the dialog box, click the + button, and then select Publish
Configurations.

3 In the Publish configuration name field, replace sine_wave_f_2 with
sine_wave_html.

4 In the MATLAB expression field, replace the default expression with
the following:

x = 0:1:rand*pi;
sine_wave_f(x)

Tip To get a quick view of the expression used in a different configuration,
position the pointer on the name of a different publish configuration
without selecting it. In the following figure, sine_wave_html is selected,
but the pointer is positioned on sine_wave_f. You can see the MATLAB
expression specified for the sine_wave_f configuration in the ToolTip.

8-94

Producing Published Output from M-Files

5 From the Publish settings drop-down list, select word_settings.

This example uses the word_settings configuration as a starting point for
adjusting the publish settings. In step 8, it will be saved using a different
Publish settings name.

6 Change the Output file format to html.

8-95

8 Publishing M-Files

7 Click Publish to test how the HTML output appears.

8 Click Save As. In the Save Publish Settings dialog box, in the Settings
name field, type html_settings, and then click Save.

8-96

Producing Published Output from M-Files

Steps for Publishing sine_wave_f.m to Microsoft® PowerPoint®

These steps provide an example of creating a configuration for sine_wave_f.m,
that publishes the M-file to Microsoft PowerPoint. You might do this to
publish output for presentation in a meeting, for example.

1 If it is not currently open, open the Edit M-File Configurations dialog box.

2 Select sine_wave_word in the list of M-files and configurations on the
left side of the dialog box, click the + button, and then select Publish
Configurations.

3 In the Publish configuration name field, replace sine_wave_f_2 with
sine_wave_ppt.

4 In the MATLAB expression field, replace the default expression with
the following:

x = 0:1:6*pi;
sine_wave_f(x)

5 From the Publish settings drop-down list, select word_settings.

This example uses the word_settings configuration as a starting point for
adjusting the publish settings. In step 8, it will be saved using a different
Publish settings name.

6 Assume for the purposes of a PowerPoint® presentation, you do not want
to include the code.

Change the Output file format to ppt and Include code to false.

8-97

8 Publishing M-Files

7 Click Publish to test how the PowerPoint output appears.

8 Click Save As. In the Save Publish Settings dialog box, in the Settings
name field, type ppt_settings, and then click Save.

8-98

Producing Published Output from M-Files

About the publish_configurations.m File
When you create one or more publish configurations using the Edit M-File
Configurations dialog box, the Editor updates the publish_configurations.m
file in your preferences directory. (This is the directory that MATLAB returns
when you run the MATLAB prefdir function.)

Although you can port this file from the preferences directory on one system
to another, there can only be one publish_configurations.m file on a

8-99

8 Publishing M-Files

system. Therefore, you should only do this if you have not already created
configurations on the second system. In addition, because this file may
contain references to file paths, you need to be sure the specified M-files and
paths exist on the second system.

The MathWorks recommends that you not update publish_configurations.m
in the MATLAB Editor or a text editor. Changes that you make using tools
other than the Edit M-File Configurations dialog box may be overwritten later.
Each time you save a configuration using the Edit M-File Configurations
dialog box, MATLAB updates the publish_configurations.m file, as well as
the run_configurations.m file. See “About the run_configurations.m File”
on page 6-88 for more information about that file.

Find Publish Configurations
The method you use to find publish configurations is the same as the one you
use to find run configurations. See “Find Configurations” on page 6-88 for
details.

Remove Publish Configurations
If you no longer need a publish configuration because you do not use it or
because you deleted the M-file with which it is associated, it is a good practice
to delete the publish configuration. The method you use to delete publish
configurations is the same as the one you use to delete run configurations.
See “Remove Configurations” on page 6-91 for details.

Reassociate and Rename Publish Configurations
Each publish configuration is associated with a specific M-file. If you move
or rename the M-file, you need to redefine the association. If you delete an
M-file, you might want to delete the associated configurations, or associate
them with a different M-file. You might also need to modify the statements
in the configurations so they will run. The method you use to reassociate
and rename publish configurations is the same as the one you use to
reassociate and rename run configurations. See “Reassociate and Rename
Configurations” on page 6-92 for details.

8-100

9

Using Notebook to Publish
to Microsoft® Word

Notebook is useful for creating electronic or printed records of MATLAB®

sessions, class notes, textbooks or technical reports to Microsoft® Word. As an
alternative to Notebook, consider using cells to publish to Microsoft Word. For
more information, see Chapter 8, “Publishing M-Files”.

Note Notebook is available only on Windows® systems that have Microsoft
Word installed. For supported versions of Word, see “Configuring Notebook”
on page 9-28.

About Using Notebook to Publish to
Word (p. 9-2)

Create an M-book in Microsoft Word,
enter commands, and perform other
basic tasks.

Defining MATLAB® Commands as
Input Cells for Notebook (p. 9-11)

Make text in the M-book become a
MATLAB command.

Evaluating MATLAB® Commands
with Notebook (p. 9-16)

Run the MATLAB commands in the
M-book.

Printing and Formatting an M-Book
(p. 9-22)

Control styles and print M-books.

Configuring Notebook (p. 9-28) Set up Notebook for use with your
version of Word.

Notebook Feature Reference (p. 9-29) Alphabetical listing of features.

9 Using Notebook to Publish to Microsoft® Word

About Using Notebook to Publish to Word

In this section...

“Using Notebook to Create an M-book” on page 9-2

“Creating or Opening an M-Book” on page 9-2

“Entering MATLAB® Commands in an M-Book” on page 9-9

“Protecting the Integrity of Your Workspace in M-Books” on page 9-9

“Ensuring Data Consistency in M-Books” on page 9-10

“Debugging and Notebook” on page 9-10

Using Notebook to Create an M-book
Using Notebook, you can create a document, called an M-book, that contains
text, MATLAB® commands, and the output from MATLAB commands.

You can think of an M-book as a record of an interactive MATLAB session
annotated with text, or as a document embedded with live MATLAB
commands and output.

Creating or Opening an M-Book
This section includes information on performing the following tasks:

• “Creating an M-Book from the MATLAB® Desktop” on page 9-2

• “Creating an M-Book While Running Notebook” on page 9-5

• “Opening an Existing M-Book” on page 9-6

• “Converting a Word Document to an M-Book” on page 9-7

Creating an M-Book from the MATLAB® Desktop
To create a new M-book from within MATLAB desktop, type the following in
the Command Window:

notebook

9-2

About Using Notebook to Publish to Word

If you are running Notebook for the first time, you might need to configure it.
See “Configuring Notebook” on page 9-28 for more information.

Notebook starts Microsoft® Word on your system and creates a new M-book,
called Document1.

When Word is opening, if a dialog box appears asking you to enable or
disable macros, choose to enable macros. Notebook defines Microsoft Word
macros that enable MATLAB to interpret the different types of cells that
hold MATLAB commands and their output. For more information on macro
security, see “Configuring Notebook” on page 9-28.

Depending on the version of Word you are using, one of the following occurs:

• In Word 2002, and 2003, Notebook adds the Notebook menu to the Word
menu bar, as shown in the following illustration. Use this menu to access
Notebook features.

9-3

9 Using Notebook to Publish to Microsoft® Word

• In Word 2007, Notebook adds the Notebook menu to the Word Add-Ins
tab, as shown in the following illustration. Use this menu to access
Notebook features.

9-4

About Using Notebook to Publish to Word

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Creating an M-Book While Running Notebook
With Notebook running, you can create a new M-book as follows:

• In Word 2002, and 2003, select File > New M-book

• In Word 2007, select Add-Ins > New M-book, as shown in the following
figure.

9-5

9 Using Notebook to Publish to Microsoft® Word

���	������ �������	���

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Opening an Existing M-Book
You can use the notebook command to open an existing M-book, as shown in
the following code, where filename is the M-book you want to open.

notebook filename

Alternatively, you can double-click an M-book file in a Windows® file
management tool, such as Explorer.

9-6

About Using Notebook to Publish to Word

When you double-click an M-book, Microsoft Word opens the M-book and
starts MATLAB if it is not already running. Notebook adds the Notebook
menu to the Word menu bar and adds New M-book to the File menu, as
shown in the figure that follows.

Converting a Word Document to an M-Book
To convert a Word document to an M-book, follow the steps provided in one of
the following sections, depending on which version of Word you are using:

• “Microsoft® Word 2002, or 2003” on page 9-8

• “Microsoft® Word 2007” on page 9-8

9-7

9 Using Notebook to Publish to Microsoft® Word

Microsoft Word 2002, or 2003.

1 Create a new M-book.

2 From the Insert menu, select File.

3 Select the file you want to convert.

4 Click OK.

Microsoft Word 2007.

1 Create a new M-book.

2 From the Insert tab, in the Text group, click the arrow next to Object and
then click Text from File, as shown in the image that follows.

The Insert File dialog box opens.

3 In the Insert File dialog box, select the file that you want to convert, and
then click OK.

9-8

About Using Notebook to Publish to Word

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Entering MATLAB® Commands in an M-Book

Note A good way to learn how to use Notebook is to open the sample M-book,
Readme.doc, and try out the various techniques described in this section. You
can find this file in the matlabroot/notebook/pc directory.

You enter MATLAB commands in an M-book the same way you enter text in
any other Word document. For example, you can enter the following text
in a Word document. The example uses text in Courier Font but you can
use any font:

Here is a sample M-book.

a = magic(3)

To execute the MATLAB magic command in this document, you must follow
the steps described in these sections:

• “Defining MATLAB® Commands as Input Cells for Notebook” on page 9-11

• “Evaluating MATLAB® Commands with Notebook” on page 9-16

MATLAB displays the output of the command in the Word document in an
output cell.

Protecting the Integrity of Your Workspace in
M-Books
When you work on more than one M-book in a single word processing session,
note that:

• Each M-book uses the same “copy” of MATLAB.

• All M-books share the same workspace.

9-9

9 Using Notebook to Publish to Microsoft® Word

If you use the same variable names in more than one M-book, data used in
one M-book can be affected by another M-book. You can protect the integrity
of your workspace by specifying the clear command as the first autoinit
cell in the M-book.

Ensuring Data Consistency in M-Books
An M-book can be thought of as a sequential record of a MATLAB session.
When executed in order, from the first MATLAB command to the last, the
M-book accurately reflects the relationships among these commands.

If, however, you change an input cell or output cell as you refine your M-book,
Notebook does not automatically recalculate input cells that depend on either
the contents or the results of the changed cells. As a result, the M-book may
contain inconsistent data.

When working on an M-book, you might find it useful to select Evaluate
M-book periodically to ensure that your M-book data is consistent. You can
also use calc zones to isolate related commands in a section of the M-book,
and then use Evaluate Calc Zone to execute only those input cells contained
in the calc zone.

Debugging and Notebook
Do not use debugging functions or the Editor while evaluating cells with
Notebook. Instead, debug M-files from within MATLAB, and then after
completing debugging, clear all the breakpoints and access the M-file using
Notebook. If you debug while evaluating from Notebook, you might experience
problems with MATLAB.

9-10

Defining MATLAB® Commands as Input Cells for Notebook

Defining MATLAB® Commands as Input Cells for Notebook

In this section...

“Defining Commands as Input Cells for Notebook” on page 9-11

“Defining Cell Groups for Notebook” on page 9-12

“Defining Autoinit Input Cells for Notebook” on page 9-13

“Defining Calc Zones for Notebook” on page 9-13

“Converting an Input Cell to Text with Notebook” on page 9-14

For information about evaluating the input cells you define, see “Evaluating
MATLAB® Commands with Notebook” on page 9-16.

Defining Commands as Input Cells for Notebook
To define a MATLAB® command in a Word document as an input cell, follow
these steps:

1 Type the command into the M-book as text. For example,

This is a sample M-book.

a = magic(3)

2 Position the cursor anywhere in the command and select
Notebook > Define Input Cell or press Alt+D. If the command is
embedded in a line of text, use the mouse to select it. Notebook defines the
MATLAB command as an input cell:

This is a sample M-book.

[a = magic(3)]

Note how Notebook changes the character font of the text in the input cell to a
bold, dark green color and encloses it within cell markers. Cell markers are
bold, gray brackets. They differ from the brackets used to enclose matrices by
their size and weight. For information about changing these default formats,
see “Modifying Styles in the M-Book Template” on page 9-22.

9-11

9 Using Notebook to Publish to Microsoft® Word

Defining Cell Groups for Notebook
You can collect several input cells into a single input cell. This is called a cell
group. Because all the output from a cell group appears in a single output cell
that Notebook places immediately after the group, cell groups are useful when
several MATLAB commands are needed, such as to fully define a graphic.

For example, if you define all the MATLAB commands that produce a graphic
as a cell group and then evaluate that cell group, Notebook generates a single
graphic that includes all the graphic components defined in the commands. If
instead you define all the MATLAB commands that generate the graphic as
separate input cells, evaluating the cells generates multiple graphic output
cells.

See “Evaluating Cell Groups with Notebook” on page 9-17 for information
about evaluating a cell group. For information about ungrouping a cell group,
see “Ungroup Cells” on page 9-36.

Creating a Cell Group for Notebook
To create a cell group, follow these steps:

1 Use the mouse to select the input cells that are to make up the group.

2 Select Notebook > Group Cells or press Alt+G.

Notebook converts the selected cells into a cell group and replaces cell
markers with a single pair that surrounds the group:

This is a sample cell group.

[date
a = magic(3)]

Note the following:

• A cell group cannot contain output cells. If the selection includes output
cells, Notebook deletes them.

• A cell group cannot contain text. If the selection includes text, Notebook
places the text after the cell group. However, if the text precedes the first
input cell in the selection, Notebook leaves it where it is.

9-12

Defining MATLAB® Commands as Input Cells for Notebook

• If you select part or all of an output cell, but not its input cell, Notebook
includes the input cell in the cell group.

When you create a cell group, Notebook defines it as an input cell unless
its first line is an autoinit cell, in which case Notebook defines the group as
an autoinit cell.

Defining Autoinit Input Cells for Notebook
You can use autoinit cells to specify MATLAB commands to be automatically
evaluated each time an M-book is opened. This is a quick and easy way
to initialize the workspace. Autoinit cells are input cells with the following
additional characteristics:

• Notebook evaluates the autoinit cells when it opens the M-book.

• Notebook displays the commands in autoinit cells using dark blue
characters.

Autoinit cells are otherwise identical to input cells.

Creating an Autoinit Cell for Notebook
You can create an autoinit cell in one of the following two ways:

• Enter the MATLAB command as text, then convert the command to an
autoinit cell by selecting Notebook > Define AutoInit Cell.

• If you already entered the MATLAB command as an input cell, you can
convert the input cell to an autoinit cell. Either select the input cell or
position the cursor in the cell, then select Notebook > Define AutoInit
Cell.

See “Evaluating MATLAB® Commands with Notebook” on page 9-16 for
information about evaluating autoinit cells.

Defining Calc Zones for Notebook
You can partition an M-book into self-contained sections, called calc zones. A
calc zone is a contiguous block of text, input cells, and output cells. Notebook
inserts Microsoft® Word section breaks before and after the section to define

9-13

9 Using Notebook to Publish to Microsoft® Word

the calc zone. The section break indicators include bold, gray brackets to
distinguish them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a
separate calc zone that can be created and tested on its own. An M-book
can contain any number of calc zones.

Note Using calc zones does not affect the scope of the variables in an M-book.
Variables used in one calc zone are accessible to all calc zones.

Creating a Calc Zone
After you create the text and cells that you want to include in the calc zone,
define the calc zone by following these steps:

1 Select the input cells and text to be included in the calc zone.

2 Select Notebook > Define Calc Zone.

Note You must select an input cell and its output cell in their entirety to
include them in the calc zone.

See “Evaluating a Calc Zone with Notebook” on page 9-19 for information
about evaluating a calc zone.

Converting an Input Cell to Text with Notebook
To convert an input cell (or an autoinit cell or a cell group) to text, follow
these steps:

1 Select the input cell with the mouse or position the cursor in the input cell.

2 Select Notebook > Undefine Cells or press Alt+U.

When Notebook converts the cell to text, it reformats the cell contents
according to the Microsoft Word Normal style. For more information about
M-book styles, see “Modifying Styles in the M-Book Template” on page

9-14

Defining MATLAB® Commands as Input Cells for Notebook

9-22. When you convert an input cell to text, Notebook also converts the
corresponding output cell to text.

9-15

9 Using Notebook to Publish to Microsoft® Word

Evaluating MATLAB® Commands with Notebook

In this section...

“Evaluating Input Commands with Notebook” on page 9-16

“Evaluating Cell Groups with Notebook” on page 9-17

“Evaluating a Range of Input Cells with Notebook” on page 9-18

“Evaluating a Calc Zone with Notebook” on page 9-19

“Evaluating an Entire M-Book” on page 9-19

“Using a Loop to Evaluate Input Cells Repeatedly with Notebook” on page
9-20

“Converting Output Cells to Text with Notebook” on page 9-21

“Deleting Output Cells with Notebook” on page 9-21

Evaluating Input Commands with Notebook
After you define a MATLAB® command as an input cell, or as an autoinit
cell, you can evaluate it in your M-book. Use the following steps to define
and evaluate a MATLAB command:

1 Type the command into the M-book as text. For example:

This is a sample M-book

a = magic(3)

2 Position the cursor anywhere in the command. If the command is embedded
in a line of text, use the mouse to select it. Then select Notebook > Define
Input Cell or press Alt+D.

Notebook defines the MATLAB command as an input cell. For example:

This is a sample M-book

[a = magic(3)]

9-16

Evaluating MATLAB® Commands with Notebook

3 Specify the input cell to be evaluated by selecting it with the mouse or by
placing the cursor in it. Then select Notebook > Evaluate Cell or press
Ctrl+Enter.

Notebook evaluates the input cell and displays the results in a output cell
immediately following the input cell. If there is already an output cell,
Notebook replaces its contents, wherever it is in the M-book. For example:

This is a sample M-book.

[a = magic(3)]

[a =
8 1 6
3 5 7
4 9 2]

The text in the output cell is blue and is enclosed within cell markers. Cell
markers are bold, gray brackets. They differ from the brackets used to
enclose matrices by their size and weight. Error messages appear in red. For
information about changing these default formats, see “Modifying Styles in
the M-Book Template” on page 9-22.

Evaluating Cell Groups with Notebook
You evaluate a cell group the same way you evaluate an input cell (because a
cell group is an input cell), as follows:

1 Position the cursor anywhere in the cell or in its output cell.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

For information about creating a cell group, see “Defining Cell Groups for
Notebook” on page 9-12.

When MATLAB evaluates a cell group, the output for all commands in the
group appears in a single output cell. By default, Notebook places the output
cell immediately after the cell group the first time the cell group is evaluated.
If you evaluate a cell group with an existing output cell, Notebook places the
results in the output cell wherever the output cell is located in the M-book.

9-17

9 Using Notebook to Publish to Microsoft® Word

Note Text or numeric output always comes first, regardless of the order of
the commands in the group.

The following illustration shows a cell group and the figure created when
you evaluate the cell group.

Evaluating a Range of Input Cells with Notebook
To evaluate more than one MATLAB command contained in different but
contiguous input cells, follow these steps:

9-18

Evaluating MATLAB® Commands with Notebook

1 Select the range of cells that includes the input cells you want to evaluate.
You can include text that surrounds input cells in your selection.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

Notebook evaluates each input cell in the selection, inserting new output
cells or replacing existing ones.

Evaluating a Calc Zone with Notebook
To evaluate a calc zone, follow these steps:

1 Position the cursor anywhere in the calc zone.

2 Select Notebook > Evaluate Calc Zone or press Alt+Enter.

For information about creating a calc zone, see “Defining Calc Zones for
Notebook” on page 9-13.

By default, Notebook places the output cell immediately after the calc zone
the first time the calc zone is evaluated. If you evaluate a calc zone with an
existing output cell, Notebook places the results in the output cell wherever
it is located in the M-book.

Evaluating an Entire M-Book
To evaluate the entire M-book, either select Notebook > Evaluate M-book
or press Alt+R.

Notebook begins at the top of the M-book regardless of the cursor position and
evaluates each input cell in the M-book. As it evaluates the M-book, Notebook
inserts new output cells or replaces existing output cells.

Controlling Execution of Multiple Commands
When you evaluate an entire M-book, and an error occurs, evaluation
continues. If you want to stop evaluation if an error occurs, follow this
procedure:

1 Select Notebook > Notebook Options.

9-19

9 Using Notebook to Publish to Microsoft® Word

The Notebook Options dialog box opens.

2 Select the Stop evaluating on error check box and click OK.

Using a Loop to Evaluate Input Cells Repeatedly with
Notebook
To evaluate a sequence of MATLAB commands repeatedly, follow these steps:

1 Use the mouse to select the input cells, including any text or output cells
located between them.

2 Select Notebook > Evaluate Loop or press Alt+L. Notebook displays the
Evaluate Loop dialog box.

3 Enter the number of times you want MATLAB to evaluate the selected
commands in the Stop After field, then click Start. The button changes to
Stop. Notebook begins evaluating the commands and indicates the number
of completed iterations in the Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking
Slower or Faster. Slower increases the delay. Faster decreases the delay.

To suspend evaluation of the commands, click Pause. The button changes to
Resume. Click Resume to continue evaluation.

To stop processing the commands, click Stop. To close the Evaluate Loop
dialog box, click Close.

9-20

Evaluating MATLAB® Commands with Notebook

Converting Output Cells to Text with Notebook
You can convert an output cell to text by undefining cells. If the output is
numeric or textual, Notebook removes the cell markers and converts the cell
contents to text according to the Microsoft® Word Normal style. If the output
is graphical, Notebook removes the cell markers and dissociates the graphic
from its input cell, but does not alter its contents.

Note Undefining an output cell does not affect the associated input cell.

To undefine an output cell, follow these steps:

1 Select the output cell you want to undefine.

2 Select Notebook > Undefine Cells or press Alt+U.

Deleting Output Cells with Notebook
To delete output cells, follow these steps:

1 Select an output cell, using the mouse, or place the cursor in the output cell.

2 Select Notebook > Purge Selected Output Cells or press Alt+P.

If you select a range of cells, Notebook deletes all the output cells in the
selected range, but any associate input cells remain intact.

9-21

9 Using Notebook to Publish to Microsoft® Word

Printing and Formatting an M-Book

In this section...

“Printing an M-Book” on page 9-22

“Modifying Styles in the M-Book Template” on page 9-22

“Choosing Loose or Compact Format for Notebook” on page 9-23

“Controlling Numeric Output Format for Notebook” on page 9-24

“Controlling Graphic Output for Notebook” on page 9-24

Printing an M-Book
You can print all or part of an M-book by doing one of the following, depending
on the version of Microsoft® Word you are using:

• In Microsoft Word 2002, 2003 — Select File > Print.

• In Microsoft Word 2007 — Select Microsoft Office Button > Print

Word follows these rules when printing M-book cells and graphics:

• Cell markers are not printed.

• Input cells, autoinit cells, and output cells (including error messages)
are printed according to their defined styles. If you prefer to print these
cells using black type instead of colors or shades of gray, you can modify
the styles.

Modifying Styles in the M-Book Template
You can control the appearance of the text in your M-book by modifying the
predefined styles stored in the M-book template, m-book.dot. These styles
control the appearance of text and cells. By default, M-books use the Word
Normal style for all other text.

For example, if you print an M-book on a color printer, input cells appear dark
green, output and autoinit cells appear dark blue, and error messages appear
red. If you print the M-book on a grayscale printer, these cells appear as

9-22

Printing and Formatting an M-Book

shades of gray. To print these cells using black type, you need to modify the
color of the Input, Output, AutoInit, and Error styles in the M-book template.

The table below describes the default styles used by Notebook. If you modify
styles, you can use the information in the tables below to help you return the
styles to their original settings. For general information about using styles
in Word documents, see the Word documentation.

Style Font Size Weight Color

Normal Times New
Roman®

10 points N/A Black

AutoInit Courier New 10 points Bold Dark blue

Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green

Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the
M-book that use that style and gives you the option to change the template.
Be cautious about making changes to the template. If you choose to apply the
changes to the template, you will affect all new M-books that you create using
the template. See the Word documentation for more information.

Choosing Loose or Compact Format for Notebook
You can specify whether a blank line appears between the input and output
cells by selecting the loose or compact format, as follows:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select either Loose or Compact.
Loose format adds an empty line. Compact format does not.

3 Click OK.

9-23

9 Using Notebook to Publish to Microsoft® Word

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Controlling Numeric Output Format for Notebook
To change how Notebook displays numeric output, follow these steps:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select a format from the Numeric
Format list. These settings correspond to the choices available with the
MATLAB® format command.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Controlling Graphic Output for Notebook
This section describes how to control several aspects of the graphic output
produced by MATLAB commands in an M-book, including

• “Embedding Graphic Output in the M-Book” on page 9-24

• “Suppressing Graphic Output for Individual Input Cells in Notebook” on
page 9-25

• “Sizing Graphic Output in Notebook” on page 9-26

• “Cropping Graphic Output in Notebook” on page 9-26

• “Adding White Space Around Graphic Output in Notebook” on page 9-27

Embedding Graphic Output in the M-Book
By default, graphic output is embedded in an M-book. To display graphic
output in a separate figure window, follow these steps:

9-24

Printing and Formatting an M-Book

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, clear the Embed Figures in
M-book check box.

3 Click OK.

Note Embedded figures do not include Handle Graphics® objects generated
by the uicontrol and uimenu functions.

Notebook determines whether to embed a figure in the M-book by examining
the value of the figure object’s Visible property. If the value of the property is
off, Notebook embeds the figure. If the value of this property is on, Notebook
directs all graphic output to the current figure window.

Suppressing Graphic Output for Individual Input Cells in
Notebook
If an input or autoinit cell generates figure output that you want to suppress,
follow these steps:

1 Place the cursor in the input cell.

2 Select Notebook > Toggle Graph Output for Cell.

Notebook suppresses graphic output from the cell, inserting the string (no
graph) after the input cell.

9-25

9 Using Notebook to Publish to Microsoft® Word

To allow graphic output for a cell, repeat the procedure. Notebook removes
the (no graph) marker and allows graphic output from the cell.

Note Toggle Graph Output for Cell overrides the Embed Figures in
M-book option, if that option is set.

Sizing Graphic Output in Notebook
To set the default size of embedded graphics in an M-book, follow these steps:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, use the Units, Width and Height
fields to set the size of graphics generated by the M-book.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for graphic output generated after you click OK. To affect existing input or
output cells, you must reevaluate the cells.

You change the size of an existing embedded figure by selecting the figure,
clicking the left mouse button anywhere in the figure, and dragging the
resize handles of the figure. If you resize an embedded figure using its resize
handles and then regenerate the figure, its size reverts to its original size.

Cropping Graphic Output in Notebook
To crop an embedded figure to cut off areas you do not want to show, follow
these steps:

1 Select the graphic by clicking the left mouse button anywhere in the figure.

2 Hold down the Shift key.

3 Drag a sizing handle toward the center of the graphic.

9-26

Printing and Formatting an M-Book

Adding White Space Around Graphic Output in Notebook
You can add white space around an embedded figure by moving the boundaries
of a graphic outward. Select the graphic, then hold down the Shift key and
drag a sizing handle away from the graphic.

9-27

9 Using Notebook to Publish to Microsoft® Word

Configuring Notebook
After you install Notebook, but before you begin using it, you must configure
it. (Notebook is installed as part of the MATLAB® installation process on
Microsoft®Windows® platforms. For more information, see the MATLAB
installation documentation for your platform.)

Before configuring Notebook, specify that Word can use the Notebook macros.

• In Word 2002, and 2003 do either of the following:

- Set the macro security level to medium: in Word, select
Tools > Macros > Security, and in the resulting dialog box, choose
Medium.

- After starting Notebook, when Word first opens, a security warning
dialog box appears. In the dialog box, select Always trust macros from
this source. This allows you to use Notebook, but still maintain a high
security level for other macros you use in Word.

• In Word 2007, follow the Word help instructions in the topic entitled
“Enable or disable macros in Office documents.”

To configure Notebook, type the following in the MATLAB Command Window:

notebook ('-setup')

MATLAB accesses the MicrosoftWindows system registry to locate Microsoft
Word and the Word templates directory, and to identify the version of Word.
MATLAB then copies Notebook’s m-book.dot template to the Word templates
directory. MATLAB Notebook supports Word versions 2002, 2003, and 2007.

When Notebook setup successfully finishes, MATLAB displays the message

Setup complete

9-28

Notebook Feature Reference

Notebook Feature Reference

In this section...

“Bring MATLAB to Front” on page 9-29

“Define Autoinit Cell” on page 9-30

“Define Calc Zone” on page 9-30

“Define Input Cell” on page 9-31

“Evaluate Calc Zone” on page 9-31

“Evaluate Cell” on page 9-32

“Evaluate Loop” on page 9-33

“Evaluate M-Book” on page 9-33

“Group Cells” on page 9-33

“Hide Cell Markers” on page 9-34

“Notebook Options” on page 9-34

“Purge Selected Output Cells” on page 9-35

“Toggle Graph Output for Cell” on page 9-35

“Undefine Cells” on page 9-35

“Ungroup Cells” on page 9-36

This section provides reference information about each of the Notebook
features, listed alphabetically. To use these features, select them from the
Notebook menu in Microsoft® Word. (In Word 2007, the Notebook menu is
on the Add-Ins tab.)

Bring MATLAB to Front
Bring MATLAB to Front brings the MATLAB® Command Window to the
foreground.

9-29

9 Using Notebook to Publish to Microsoft® Word

Define Autoinit Cell
Define AutoInit Cell creates an autoinit cell by converting the current
paragraph, selected text, or input cell. An autoinit cell is an input cell that is
automatically evaluated whenever you open an M-book.

Result
If you select this feature while the cursor is in a paragraph of text, Notebook
converts the entire paragraph to an autoinit cell. If you select this feature
while text is selected, Notebook converts the text to an autoinit cell. If you
select this feature while the cursor is in an input cell, Notebook converts the
input cell to an autoinit cell.

Format
Notebook formats the autoinit cell using the AutoInit style, defined as bold,
dark blue, 10-point Courier New.

See Also
For more information about autoinit cells, see “Defining Autoinit Input Cells
for Notebook” on page 9-13.

Define Calc Zone
Define Calc Zone defines the selected text, input cells, and output cells as a
calc zone. A calc zone is a contiguous block of related text, input cells, and
output cells that describes a specific operation or problem.

Result
Notebook defines a calc zone as a Word document section, placing section
breaks before and after the calc zone. However, Word does not display section
breaks at the beginning or end of a document.

See Also
For information about evaluating calc zones, see “Evaluating a Calc Zone with
Notebook” on page 9-19. For more information about document sections, see
the Microsoft Word documentation.

9-30

Notebook Feature Reference

Define Input Cell
Define Input Cell creates an input cell by converting the current paragraph,
selected text, or autoinit cell. An input cell contains a MATLAB command.

Result
If you select this feature while the cursor is in a paragraph of text, Notebook
converts the entire paragraph to an input cell. If you select this feature while
text is selected, Notebook converts the text to an input cell. If you select this
feature while the cursor is in an autoinit cell, Notebook converts the autoinit
cell to an input cell.

Format
Notebook encloses the text in cell markers and formats the cell using the
Input style, defined as bold, dark green, 10-point Courier New.

See Also
For more information about creating input cells, see “Defining MATLAB®

Commands as Input Cells for Notebook” on page 9-11. For information about
evaluating input cells, see “Evaluating MATLAB® Commands with Notebook”
on page 9-16.

Evaluate Calc Zone
Evaluate Calc Zone sends the input cells in the current calc zone to
MATLAB to be evaluated. The current calc zone is the Word section that
contains the cursor.

Result
As Notebook evaluates each input cell, it generates an output cell. When you
evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results
in the output cell wherever it is in the M-book.

9-31

9 Using Notebook to Publish to Microsoft® Word

See Also
For more information, see “Evaluating a Calc Zone with Notebook” on page
9-19.

Evaluate Cell
Evaluate Cell sends the current input cell or cell group to MATLAB to be
evaluated. An input cell contains a MATLAB command. A cell group is a
single, multiline input cell that contains more than one MATLAB command.
Notebook displays the output or an error message in an output cell.

Result
If you evaluate an input cell for which there is no output cell, Notebook places
the output cell immediately after the input cell that generated it. If you
evaluate an input cell for which there is an output cell, Notebook replaces the
results in the output cell wherever it is in the M-book. If you evaluate a cell
group, all output for the cell appears in a single output cell.

An input cell or cell group is the current input cell or cell group if

• The cursor is in the input cell or cell group.

• The cursor is at the end of the line that contains the closing cell marker for
the input cell or cell group.

• The cursor is in the output cell for the input cell or cell group.

• The input cell or cell group is selected.

Note Evaluating a cell that involves a lengthy operation may cause a
time-out. If this happens, Word displays a time-out message and asks whether
you want to continue waiting for a response or terminate the request. If you
choose to continue, Word resets the time-out value and continues waiting for a
response. Word sets the time-out value; you cannot change it.

9-32

Notebook Feature Reference

See Also
For more information, see “Evaluating MATLAB® Commands with Notebook”
on page 9-16. For information about evaluating the entire M-book, see
“Evaluating an Entire M-Book” on page 9-19.

Evaluate Loop
Evaluate Loop evaluates the selected input cells repeatedly.

For more information, see “Using a Loop to Evaluate Input Cells Repeatedly
with Notebook” on page 9-20.

Evaluate M-Book
Evaluate M-book evaluates the entire M-book, sending all input cells
to MATLAB to be evaluated. Notebook begins at the top of the M-book
regardless of the cursor position.

Result
As Notebook evaluates each input cell, it generates an output cell. When you
evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results
in the output cell wherever it is in the M-book.

See Also
For more information, see “Evaluating an Entire M-Book” on page 9-19.

Group Cells
Group Cells converts the input cells in the selection into a single multiline
input cell called a cell group. You evaluate a cell group using Evaluate
Cell. When you evaluate a cell group, all of its output follows the group and
appears in a single output cell.

9-33

9 Using Notebook to Publish to Microsoft® Word

Result
If you include text in the selection, Notebook moves it after the cell group.
However, if text precedes the first input cell in the group, the text will remain
before the group.

If you include output cells in the selection, Notebook deletes them. If you
select all or part of an output cell before selecting this feature, Notebook
includes its input cell in the cell group.

If the first line in the cell group is an autoinit cell, the entire group acts as a
sequence of autoinit cells. Otherwise, the group acts as a sequence of input
cells. You can convert an entire cell group to an autoinit cell by using Define
AutoInit Cell.

See Also
For more information, see “Defining Cell Groups for Notebook” on page 9-12.
For information about converting a cell group to individual input cells, see
“Ungroup Cells” on page 9-36.

Hide Cell Markers
Hide Cell Markers hides cell markers in the M-book.

When you select this feature, it changes to Show Cell Markers.

Note Notebook does not print cell markers whether you choose to hide them
or show them on the screen.

Notebook Options
Notebook Options allows you to examine and modify display options for
numeric and graphic output.

See Also
See “Printing and Formatting an M-Book” on page 9-22 for more information.

9-34

Notebook Feature Reference

Purge Selected Output Cells
Purge Selected Output Cells deletes all output cells from the current
selection.

See Also
For more information, see “Deleting Output Cells with Notebook” on page
9-21.

Toggle Graph Output for Cell
Toggle Graph Output for Cell suppresses or allows graphic output from
an input cell.

If an input or autoinit cell generates figure output that you want to suppress,
place the cursor in the input cell and choose this feature. The string (no
graph) will be placed after the input cell to indicate that graph output for
that cell will be suppressed.

To allow graphic output for that cell, place the cursor inside the input cell and
choose Toggle Graph Output for Cell again. The (no graph) marker will
be removed. This feature overrides the Embed Figures in M-book option, if
that option is set in the Notebook Options dialog box.

See Also
See “Embedding Graphic Output in the M-Book” on page 9-24 and
“Suppressing Graphic Output for Individual Input Cells in Notebook” on page
9-25 for more information.

Undefine Cells
Undefine Cells converts the selected cells to text. If no cells are selected but
the cursor is in a cell, Notebook undefines that cell. Notebook removes the cell
markers and reformats the cell according to the Normal style.

If you undefine an input cell, Notebook automatically undefines its output
cell. However, if you undefine an output cell, Notebook does not undefine its
input cell. If you undefine an output cell containing an embedded graphic, the
graphic remains in the M-book but is no longer associated with an input cell.

9-35

9 Using Notebook to Publish to Microsoft® Word

See Also
For information about the Normal style, see “Modifying Styles in the M-Book
Template” on page 9-22. For information about deleting output cells, see
“Purge Selected Output Cells” on page 9-35.

Ungroup Cells
Ungroup Cells converts the current cell group into a sequence of individual
input cells or autoinit cells. If the cell group is an input cell, Notebook
converts the cell group to input cells. If the cell group is an autoinit cell,
Notebook converts the cell group to autoinit cells. Notebook deletes the output
cell for the cell group.

A cell group is the current cell group if

• The cursor is in the cell group.

• The cursor is at the end of a line that contains the closing cell marker for
the cell group.

• The cursor is in the output cell for the cell group.

• The cell group is selected.

See Also
For information about creating cell groups, see the description of “Defining
Cell Groups for Notebook” on page 9-12.

9-36

10

Source Control Interface

The source control interface provides access to your source control system
from the MATLAB® desktop. Source control systems, also known as version
control, revision control, configuration management, and file management
systems, are platform dependent—the topics for the Microsoft® Windows®

platforms appear first, followed by the topics for the UNIX® platforms.

Source Control Interface on
Microsoft® Windows® (p. 10-3)

Overview of the ways you can use
the source control interface on
MicrosoftWindows platforms.

Setting Up the Source Control
Interface on Microsoft® Windows®

(p. 10-4)

Set up the source control interface
before you check files into and out of
your source control system from the
MATLAB desktop.

Checking Files Into and Out of
Source Control from the MATLAB®

Desktop on Microsoft® Windows®

(p. 10-12)

Check files into and out of source
control. Undo a checkout.

Additional Source Control Actions
on Microsoft® Windows® (p. 10-15)

Get the latest version of files, remove
files from source control, show file
history, compare working copy to
latest version in source control, view
source control properties of a file,
and start the source control system.

10 Source Control Interface

Performing Source Control Actions
from the Editor, Simulink®, or
Stateflow® File Menu on Microsoft®

Windows® (p. 10-24)

Create or open a file in the Editor,
or the Simulink®, or Stateflow®

products and perform source control
actions from their File menus, rather
than from the Current Directory
browser.

Troubleshooting Source Control
Problems on Microsoft® Windows®

(p. 10-25)

Solutions to some common source
control problems.

Source Control Interface on UNIX®

Platforms (p. 10-27)
Overview of the ways you can use
the source control interface on UNIX
platforms.

Specifying the Source Control
System on UNIX® Platforms
(p. 10-28)

Specify the source control system
using MATLAB software, list the
currently selected source control
system using the cmopts function,
set a view and check out a directory
with ClearCase®.

Checking Files Into the Source
Control System on UNIX® Platforms
(p. 10-31)

Check in files using the Current
Directory browser, the Editor,
Simulink, Stateflow, or the checkin
function.

Checking Files Out of the Source
Control System on UNIX® (p. 10-34)

Check files out using the Current
Directory browser, the Editor, the
Simulink or Stateflow products, or
the checkout function.

Undoing the Checkout on UNIX®

Platforms (p. 10-37)
Undoing a checkout using the
Current Directory browser, the
Editor, the Simulink or Stateflow
products, or the undocheckout
function

10-2

Source Control Interface on Microsoft® Windows®

Source Control Interface on Microsoft® Windows®

If you use source control systems to manage your files, you can interface with
the systems to perform source control actions from within the MATLAB®,
Simulink®, and Stateflow® products. Use menu items in the MATLAB,
Simulink, or Stateflow products, or run functions in the MATLAB Command
Window to interface with your source control systems.

The source control interface on Windows® works with any source control
system that conforms to the Microsoft® Common Source Control standard,
Version 1.1. If your source control system does not conform to the standard,
use a Microsoft Source Code Control API wrapper product for your source
control system so that you can interface with it from the MATLAB, Simulink,
and Stateflow products.

Perform most source control interface actions from the Current Directory
browser. You can also perform many of these actions for a single file from the
MATLAB Editor, a Simulink model window, or a Stateflow chart window—for
more information, see “Performing Source Control Actions from the Editor,
Simulink®, or Stateflow® File Menu on Microsoft® Windows®” on page 10-24.
Another way to access many of the source control actions is with the verctrl
function.

10-3

10 Source Control Interface

Setting Up the Source Control Interface on Microsoft®

Windows®

In this section...

“Create Projects in Source Control System” on page 10-4

“Specify Source Control System with MATLAB® Software” on page 10-6

“Register Source Control Project with MATLAB® Software” on page 10-8

“Add Files to Source Control” on page 10-10

Create Projects in Source Control System
In your source control system, create the projects that your directories and
files will be associated with.

All files in a directory must belong to the same source control project. Be sure
the working directory for the project in the source control system specifies the
correct path to the directory on disk.

Example of Creating Source Control Project
This example uses the project my_thesis_files in Microsoft® Visual
SourceSafe®. This illustration of the Current Directory browser shows the
path to the directory on disk, I:\my_thesis_files.

10-4

Setting Up the Source Control Interface on Microsoft® Windows®

The following illustration shows the example project in the source control
system.

To set the working directory in Microsoft Visual SourceSafe for this example,
select my_thesis_files, right-click, select Set Working Folder from the
context menu, and specify D:\my_thesis_files in the resulting dialog box.

10-5

10 Source Control Interface

Specify Source Control System with MATLAB®

Software
In MATLAB, specify the source control system you want to access. Select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
list includes all installed source control systems that support the Microsoft®

Common Source Control standard.

Select the source control system you want to interface with and click OK.

10-6

Setting Up the Source Control Interface on Microsoft® Windows®

MATLAB remembers preferences between sessions, so you only need to
perform this action again when you want to access a different source control
system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list all available source control systems using verctrl with the

10-7

10 Source Control Interface

all_systems argument. Use cmopts to display the name of the currently
selected source control system.

Register Source Control Project with MATLAB®

Software
Register a source control system project with a directory in MATLAB, that is,
associate a source control system project with a directory and all files in that
directory. Do this only one time for any file in the directory, which registers all
files in that directory:

1 In the MATLAB Current Directory browser, select a file that is in the
directory you want to associate with a project in your source control system.
For example, select D:\my_thesis_files\wind.m. This will associate all
files in the my_thesis_files directory.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The
Name_of_Source_Control_System is the source control system you
selected using preferences as described in “Specify Source Control System
with MATLAB® Software” on page 10-6.

10-8

Setting Up the Source Control Interface on Microsoft® Windows®

The following example shows Microsoft Visual SourceSafe.

3 In the resulting Name_of_Source_Control_System Login dialog box,
provide the username and password you use to access your source control
system, and click OK.

10-9

10 Source Control Interface

4 In the resulting Choose project from
Name_of_Source_Control_System dialog box, select the source control
system project to associate with the directory and click OK. This example
shows my_thesis_files.

The selected file, its directory, and all files in the directory, are associated
with the source control system project you selected. For the example,
MATLAB associates all files in D:\my_thesis_files with the source
control project my_thesis_files.

Add Files to Source Control
Add files to the source control system. Do this only once for each file:

1 In the Current Directory browser, select files you want to add to the source
control system.

10-10

Setting Up the Source Control Interface on Microsoft® Windows®

2 Right-click, and from the context menu, select Source Control > Add
to Source Control.

3 The resulting Add to source control dialog box lists files you selected to
add. You can add text in the Comments field. If you expect to use the
files soon, select the Keep checked out check box (which is selected by
default). Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

Function Alternative
The function alternative is verctrl with the add argument.

10-11

10 Source Control Interface

Checking Files Into and Out of Source Control from the
MATLAB® Desktop on Microsoft® Windows®

In this section...

“Check Files Into Source Control” on page 10-12

“Check Files Out of Source Control” on page 10-13

“Undoing the Checkout” on page 10-14

Before checking files into and out of your source control system from the
MATLAB® desktop, be sure to set up your system for use with MATLAB
as described in “Setting Up the Source Control Interface on Microsoft®

Windows®” on page 10-4.

Check Files Into Source Control
After creating or modifying files using MATLAB software or related products,
check the files into the source control system by performing these steps:

1 In the Current Directory browser, select the files to check in. A file can be
open or closed when you check it in, but it must be saved, that is, it cannot
contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

If a file contains unsaved changes when you try to check it in, you will be
prompted to save the changes to complete the checkin. If you did not keep the
file checked out and you keep the file open, note that it is a read-only version.

Function Alternative
The function alternative is verctrl with the checkin argument.

10-12

Checking Files Into and Out of Source Control from the MATLAB® Desktop on Microsoft® Windows®

Check Files Out of Source Control
From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Directory browser, select the files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out.

3 The resulting Check out file(s) dialog box lists files you selected to check
out. Enter comment text in the Comments field, which appears if your
source control system supports comments on checkout. Click OK.

After checking out a file, make changes to it in MATLAB or another product,
and save the file. For example, edit an M-file in the Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any changes.
This protects you from accidentally overwriting the source control version of
the file.

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or directly from your
source control system.

10-13

10 Source Control Interface

Function Alternative
The function alternative is verctrl with the checkout argument.

Undoing the Checkout
You can undo the checkout for files. The files remain checked in, and do
not have any of the changes you made since you last checked them out. To
save any changes you have made since checking out a particular file select
File > Save As, and supply a different file name before you undo the checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Directory browser, select the files for which you
want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you
selected.

3 Click OK.

Function Alternative
The function alternative is verctrl with the undocheckout argument.

10-14

Additional Source Control Actions on Microsoft® Windows®

Additional Source Control Actions on Microsoft® Windows®

In this section...

“Getting the Latest Version of Files for Viewing or Compiling” on page 10-15

“Removing Files from the Source Control System” on page 10-16

“Showing File History” on page 10-17

“Comparing the Working Copy of a File to the Latest Version in Source
Control” on page 10-19

“Viewing Source Control Properties of a File” on page 10-21

“Starting the Source Control System” on page 10-22

Getting the Latest Version of Files for Viewing or
Compiling
You can get the latest version of a file from the source control system for
viewing or running. Getting a file differs from checking it out. When you
get a file, it is write protected so you cannot edit it, but when you check out
a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLAB® Current Directory browser, select the directories or files
that you want to get. If you select files, you cannot also select directories.

10-15

10 Source Control Interface

2 Right-click, and from the context menu, select Source Control > Get
Latest Version.

The MATLAB Get latest version dialog box opens, listing the files or
directories you selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for
editing.

Function Alternative
The function alternative is verctrl with the get argument.

Removing Files from the Source Control System
To remove files from the source control system, follow these steps:

1 In the MATLAB Current Directory browser, select the files you want to
remove.

2 Right-click, and from the context menu, select Source Control > Remove
from Source Control.

The MATLAB Remove from source control dialog box opens, listing
the files you selected.

10-16

Additional Source Control Actions on Microsoft® Windows®

3 Click OK.

Function Alternative
The function alternative is verctrl with the remove argument.

Showing File History
To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which
you want to view the history.

2 Right-click, and from the context menu, select Source Control > History.

10-17

10 Source Control Interface

A dialog box, which is specific to your source control system, opens. For
Microsoft® Visual SourceSafe®, the History Options dialog box opens, as
shown in the following example illustration.

3 Complete the dialog box to specify the range of history you want for the
selected file and click OK. For example, enter my_name for User.

10-18

Additional Source Control Actions on Microsoft® Windows®

The history presented depends on your source control system. For Microsoft
Visual SourceSafe, the History dialog box opens for that file, showing the
file’s history in the source control system.

Function Alternative
The function alternative is verctrl with the history argument.

Comparing the Working Copy of a File to the Latest
Version in Source Control
You can compare the current working copy of a file with the latest checked-in
version of the file in the source control system. This highlights the differences
between the two files, showing the changes you made since you checked out
the file.

To view the differences, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which you
want to view differences. This is a file that has been checked out and edited.

10-19

10 Source Control Interface

2 Right-click, and from the context menu, select Source
Control > Differences.

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and
click OK. The following example is for Microsoft Visual SourceSafe.

The method of presenting differences depends on your source control
system. For Microsoft Visual SourceSafe, the Differences for dialog box
opens. This highlights the differences between the working copy of the file
and the latest checked-in version of the file.

10-20

Additional Source Control Actions on Microsoft® Windows®

Function Alternative
The function alternative is verctrl with the showdiff or isdiff argument.

Viewing Source Control Properties of a File
To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which
you want to view properties.

2 Right-click, and from the context menu, select Source
Control > Properties.

10-21

10 Source Control Interface

A dialog box, which is specific to your source control system, opens. The
following example shows the Microsoft Visual SourceSafe properties dialog
box.

Function Alternative
The function alternative is verctrl with the properties argument.

Starting the Source Control System
All the MATLAB source control actions automatically start the source control
system to perform the action, if the source control system is not already
open. If you want to start the source control system from MATLAB without
performing a specific action source control action,

10-22

Additional Source Control Actions on Microsoft® Windows®

1 Right-click any directory or file in the MATLAB Current Directory browser

2 From the context menu, select Source Control > Start Source Control
System.

The interface to your source control system opens, showing the source control
project associated with the current directory in MATLAB. The following
example shows the Microsoft Visual SourceSafe Explorer interface.

Function Alternative
The function alternative is verctrl with the runscc argument.

10-23

10 Source Control Interface

Performing Source Control Actions from the Editor,
Simulink®, or Stateflow® File Menu on Microsoft® Windows®

You can create or open a file in the Editor, the Simulink® or Stateflow®

products and perform most source control actions from their File > Source
Control menus, rather than from the Current Directory browser as described
in previous sections. Following are some differences in the source control
interface process when you use the Editor, Simulink, or Stateflow:

• You can perform actions on only one file at time.

• Some of the dialog boxes have a different icon in the title bar. For example,
the Check out file(s) dialog box uses an M-file Editor document icon
instead of the MATLAB® icon.

• You cannot add a new (Untitled) file, but must instead first save the file.

• You cannot register projects from the Simulink or Stateflow products.
Instead, register a project using the Current Directory browser, as described
in “Register Source Control Project with MATLAB® Software” on page 10-8.

10-24

Troubleshooting Source Control Problems on Microsoft® Windows®

Troubleshooting Source Control Problems on Microsoft®

Windows®

In this section...

“Source Control Error: Provider Not Present or Not Installed Properly” on
page 10-25

“Restriction Against @ Character” on page 10-26

“Add to Source Control Is the Only Action Available” on page 10-26

“More Solutions for Source Control Problems” on page 10-26

Source Control Error: Provider Not Present or Not
Installed Properly
In some cases, MATLAB® software recognizes your source control system but
you cannot use source control features for MATLAB. Specifically, when you
select File > Preferences > General > Source Control, or run cmopts,
MATLAB lists your source control system, but you cannot perform any source
control actions. Only the File > Source Control > Start Source Control
System menu item is available, and when you select it, MATLAB displays
this error:

Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from
the source control application is not present. Make sure this registry key is
present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the
DLL-file exists in that location. If you are not familiar with registry keys, ask
your system administrator for help.

10-25

10 Source Control Interface

If this does not solve the problem and you use Microsoft® Visual SourceSafe®,
try running a client setup for your source control application. When
SourceSafe is installed on a server for a group to use, each machine client can
run a setup but is not required to do so. However, some applications that
interface with SourceSafe, including MATLAB, require you to run the client
setup. Run the client setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character
Some source control systems, such as Perforce® and Synergy™, reserve the
@ character. Perforce, for example, uses it as a revision specifier. Therefore,
you might experience problems if you use these source control systems with
MATLAB files and directories that include the @ character in the directory
or file name.

You might be able to work around this restriction by quoting nonstandard
characters in file names, such as with an escape sequence, which some source
control systems allow. Consult your source control system documentation or
technical support resources for a workaround.

Add to Source Control Is the Only Action Available
To use source control features for a file in the Simulink® or Stateflow®

products, the file’s source control project must first be registered with
MATLAB. When a file’s source control project is not registered with MATLAB,
all File > Source Control menu items are disabled except Add to Source
Control. You can select Add to Source, which registers the project with
MATLAB, or you can register the project using the Current Directory browser,
as described in “Register Source Control Project with MATLAB® Software”
on page 10-8. You can then perform source control actions for all files in that
project (directory).

More Solutions for Source Control Problems
The latest solutions for problems interfacing MATLAB with a source
control system appear on the MathWorks Web page for support at
http://www.mathworks.com/support/. Search Solutions and Technical
Notes for “source control.”

10-26

http://www.mathworks.com/support/

Source Control Interface on UNIX® Platforms

Source Control Interface on UNIX® Platforms
If you use a source control system to manage your files, you can check M-files
and Simulink® models, and Stateflow® charts into and out of the source
control system from within the MATLAB®, Simulink, and Stateflow products.

The source control interface supports four popular source control systems,
as well as a custom option:

• ClearCase® software from IBM® Rational®

• Concurrent Version System (CVS)

• ChangeMan® and PVCS® software from Serena®

• Revision Control System (RCS)

• Custom option — Allows you to build your own interface if you use a
different source control system. For details, see the reference page for
customverctrl.

Perform source control interface actions for a single file using menu items in
the MATLAB Editor, a Simulink model window, or a Stateflow chart window.
To perform source control actions on multiple files, use the Current Directory
browser. Alternatively, run source control functions in the Command Window,
which provide some options not supported with the menu items.

10-27

10 Source Control Interface

Specifying the Source Control System on UNIX® Platforms

In this section...

“MATLAB® Desktop Alternative” on page 10-28

“Function Alternative” on page 10-29

“Setting a View and Checking Out a Directory with ClearCase® Software
on UNIX® Platforms” on page 10-30

MATLAB® Desktop Alternative
To specify the source control system you want to access, select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
default selection is None.

Select the source control system with which you want to interface and click
OK.

10-28

Specifying the Source Control System on UNIX® Platforms

MATLAB® remembers preferences between sessions, so you only need to
perform this action when you want to access a different source control system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list the currently selected source control system by running cmopts.

10-29

10 Source Control Interface

Setting a View and Checking Out a Directory with
ClearCase® Software on UNIX® Platforms
If you use ClearCase® software on a UNIX® platform, perform the following
from ClearCase:

1 Set a view.

2 Check out the directory that contains files you want to save, check in, or
check out.

You can now use the MATLAB, Simulink®, or Stateflow® source control
interfaces to ClearCase software.

10-30

Checking Files Into the Source Control System on UNIX® Platforms

Checking Files Into the Source Control System on UNIX®

Platforms

In this section...

“Checking In One or More Files Using the Current Directory Browser” on
page 10-31

“Checking In One File Using the Editor, or the Simulink® or Stateflow®

Products” on page 10-32

“Function Alternative” on page 10-33

Checking In One or More Files Using the Current
Directory Browser

1 From the Current Directory browser, select the file or files to check in. A
file can be open or closed when you check it in, but it must be saved, that is,
it cannot contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

10-31

10 Source Control Interface

The files are checked into the source control system. If any file contains
unsaved changes when you try to check it in, you will be prompted to and
must then save the changes to complete the checkin.

An error appears in the Command Window if a file is already checked in.

If you did not keep a file checked out and you keep that file open, note that it
is a read-only version.

Checking In One File Using the Editor, or the Simulink®

or Stateflow® Products

1 From the Editor, or the Simulink® or Stateflow® products, with the file open
and saved, select File > Source Control > Check In.

2 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

10-32

Checking Files Into the Source Control System on UNIX® Platforms

Function Alternative
Use checkin to check files into the source control system. The files can be
open or closed when you use checkin. The checkin function takes this form:

checkin({'file1','file2', ...},'comments','comment_text',...
'option','value')

For filen, use the complete path and include the file extension. You must
supply the comments argument and a comments string with checkin.

Use the option argument to

• Check in a file and keep it checked out — set the lock option value to on.

• Check in a file even though it has not changed since the previous check in
— set the force option value to on.

The comments argument and the lock and force options apply to all files
checked in.

Example Using checkin Function
To check in the file clock.m with the comment Adjustment for leap year,
type

checkin('\myserver\mymfiles\clock.m','comments', ...
'Adjustment for leap year')

For other examples, see the reference page for checkin.

10-33

10 Source Control Interface

Checking Files Out of the Source Control System on UNIX®

In this section...

“Checking Out One or More Files Using the Current Directory Browser” on
page 10-34

“Checking Out a Single File Using the Editor, or the Simulink® or
Stateflow® Products” on page 10-35

“Function Alternative” on page 10-35

Checking Out One or More Files Using the Current
Directory Browser

1 In the Current Directory browser, select the file or files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out. The Check out file(s) dialog box opens.

3 Complete the dialog box:

a To check out the versions that were most recently checked in, select
the Latest version option.

b To check out a specific version of the files, select the Version number
option and type the version number in the field.

10-34

Checking Files Out of the Source Control System on UNIX®

c To prevent others from checking out the files while you have them
checked out, select Lock latest version. To check out read-only
versions of the file, clear Lock latest version.

4 Click OK.
An error appears in the Command Window if a file is already checked out.

After checking out files, make changes to them using MATLAB® software or
another software product, and save the files. For example, edit an M-file
in the Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any changes.
This protects you from accidentally overwriting the source control version of
the file.

If you end the MATLAB session, the file or files remain checked out. You can
check in files from within MATLAB during a later session, or directly from
your source control system.

Checking Out a Single File Using the Editor, or the
Simulink® or Stateflow® Products

1 Open the M-file, Simulink® model, or Stateflow® chart you want to check
out. The title bar indicates the file is read-only.

2 Select File > Source Control > Check Out. The Check out file(s)
dialog box opens.

3 Complete the dialog box as described in step of “Checking Out One or More
Files Using the Current Directory Browser” on page 10-34, and click OK.

Function Alternative
Use checkout to check out a file from the source control system. You can
check out multiple files at once and specify checkout options. The checkout
function takes this form:

checkout({'file1','file2', ...},'option','value')

10-35

10 Source Control Interface

For filen, use the complete path and include the file extension.

Use the option argument to

• Check out a read-only version of the file — set the lock option value to off.

• Check out the file even if you already have it checked out — set the force
option value to on.

• Check out a specific version of the file — use the revision option, and
assign the version number to the value argument.

The options apply to all files being checked out. The files can be open or closed
when you use checkout.

Example Using checkout Function—Check Out a Specific
Version of a File
To check out the 1.1 version of the file clock.m, type

checkout('\myserver\mymfiles\clock.m','revision','1.1')

For other examples, see the reference page for checkout.

10-36

Undoing the Checkout on UNIX® Platforms

Undoing the Checkout on UNIX® Platforms

In this section...

“Impact of Undoing a File Checkout” on page 10-37

“Undoing the Checkout for One or More Files Using the Current Directory
Browser” on page 10-37

“Undoing the Checkout for a Single File Using the Editor, or the Simulink®

or Stateflow® Products” on page 10-37

“Function Alternative” on page 10-38

Impact of Undoing a File Checkout
When you undo the checkout for a file, the file remains checked in, and does
not have any of the changes you made since you checked it out. To save any
changes you have made since checking out a file, select File > Save As, and
supply a different file name before you undo the checkout. Undo the checkout
using the Current Directory browser for one or more files. For only one file,
you can also use the Editor, or the Simulink® or Stateflow® products.

Undoing the Checkout for One or More Files Using
the Current Directory Browser

1 In the MATLAB® Current Directory browser, select the file or files for
which you want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout. MATLAB undoes the checkout.

An error appears in the Command Window if the file is not checked out.

Undoing the Checkout for a Single File Using the
Editor, or the Simulink® or Stateflow® Products

1 Open the M-file, Simulink model, or Stateflow chart for which you want
to undo the checkout.

10-37

10 Source Control Interface

2 Select File > Source Control > Undo Checkout. MATLAB undoes the
checkout.

Function Alternative
The undocheckout function takes this form:

undocheckout({'file1','file2', ...})

Use the complete path for filen and include the file extension. For example,
to undo the checkout for the files clock.m and calendar.m, type

undocheckout({'\myserver\mymfiles\clock.m',...
'\myserver\mymfiles\calendar.m'})

10-38

Index

IndexSymbols and Numerics
%

comment symbol 6-17
create comment 6-18

, after functions 3-29
; after functions 3-29
! function 3-8

argument length restrictions 3-9
%% 6-149
{% block comment symbol 6-19
>> prompt in Command Window 3-4
... in statements 3-17

A
accelerators, keyboard 2-40
Access Bridge 2-93
accessibility 2-90

documentation 2-91
installation 2-93
troubleshooting 2-96

account
MathWorks products 2-58

activate license 2-59
addpath 5-38
antialiasing

desktop fonts 2-80
AppleScript

running from MATLAB 3-9
arrays

editing 5-13
workspace 5-2

arrow keys
Command Window usage 3-25
Editor 6-70

ASCII files
viewing contents of 5-60

assistive technology 2-90
asv 6-74
auto-fix

M-Lint 6-106
auto-refresh rate

Current Directory browser 5-67
autoinit cells

converting input cells to 9-30
converting to input cells 9-31
defining 9-13

AutoInit style
definition of 9-23

automatic completion of statement
Command Window 3-19
Editor 6-22

autosave 6-74

B
Back and Forward navigation 6-46
backup

MAEditor autosave 6-74
bang (!) function 3-8
bang function 3-8
base workspace 5-9
batch mode for starting MATLAB 1-24
beep

preferences 3-45
binary files

comparing 6-63
blank spaces in MATLAB commands 3-14
block comments 6-19

extending 6-19
block indenting 6-29
blocks

formatted within cell 8-48
blue breakpoint icon 6-142
bold text

in published M-files 8-42
within cell 8-42

bookmarks
in files in Editor 6-45
in Help browser 4-24

Index-1

Index

Boolean searching in Help browser 4-21
breaking long lines 3-17
breaking out of a running program 3-8
breakpoints

anonymous functions 6-142
blue icon 6-142
clearing (removing) 6-135
clearing, automatically 6-135
conditional 6-140
disabling and enabling 6-134
multiple per line 6-142
running file 6-125
setting 6-121
types 6-121

Bring MATLAB to Front 9-29
browser

Help 4-3
Web, in MATLAB 2-56

bugs, reporting to The MathWorks 4-54
built-in editor 6-5

C
C/C++

editing files in Editor 6-13
caching

M-files 6-74
search path 5-41

calc zones
defining 9-13
ensuring workspace consistency in

M-books 9-10
evaluating 9-19
output from 9-19

callbacks
in shortcuts 2-32

calling from MATLAB 3-8
capitalization in MATLAB 3-14
case

changing lower to upper in Editor 6-15

changing upper to lower in Editor 6-15
case sensitivity in MATLAB 3-14
cell arrays

editing 5-15
cell breaks 6-149 8-20
cell dividers 6-149
cell groups

converting to input cells 9-36
creating 9-12
definition of 9-12
evaluating 9-17
output from 9-17

cell markers
defined 9-11
hiding 9-34
printing 9-22

cell mode 6-147
cell scripts 6-147
cell titles 6-151
cells

defining in M-files 6-149
M-file 6-10
M-files and 6-147

cells in M-File Editor 6-147
cells in M-files

beep 6-166
evaluating 6-164 to 6-165
evaluating code in 6-166
modifying values in 6-167
nested 6-155
removing 6-154
toolbar 6-148

character set
preference for MAT-files 2-66

checkin
on UNIX platforms 10-33

checking in files
on UNIX platforms 10-31

checking out files
on UNIX platforms 10-34

Index-2

Index

on Windows platforms 10-13
undoing on UNIX platforms 10-37
undoing on Windows platforms 10-14

checkout
on UNIX platforms 10-35

clc 3-31
clear 5-8
ClearCase source control system

configuring on UNIX platforms 10-30
clearing

Command Window 3-31
variables 5-8

clicking on multiple items 2-51
clipboard 2-51
closing

desktop tools 2-7
M-files 6-75
MATLAB 1-31

code analyzer 6-100
Code check report

checking M-files code 7-16
code examples 6-3
code folding

behavior 6-37
preferences 6-37
viewing code in ToolTip 6-36

code folding in M-files 6-32
code iteration 6-147
code resources 6-3
code samples

sample code 6-3
collapsing

code in M-files 6-32
Collatz problem 6-118
color

general preferences 2-84
indicators for syntax 3-15
printing M-book 9-22

colors
Help browser 4-42

in M-files 6-28
preferences in MATLAB 2-81

column numbers 6-30
command flags 1-18
Command History

about 3-48
deleting entries in window 3-57
file 3-49
find entry by letter 3-52
preferences 3-59
printing window contents 3-57
running functions from window 3-51

command history file 3-50
command line

defined 3-4
editing 3-16

command name completion
Command Window 3-19
Editor 6-22

command switches 1-18
Command Window

bringing to front in Notebook 9-29
clearing 3-31
editing in 3-16
getting started message bar 3-42
help 4-8
paging of output in 3-29
preferences 3-39
preferences, keyboard 3-42
printing contents of 3-32
prompt 3-3
width 3-41

Command Window scroll buffer 3-42
commands

executing a group of 2-32
on multiple lines 3-17
to operating system 3-8

comments
adding/removing in C/C++ files 6-18
adding/removing in Java files 6-18

Index-3

Index

adding/removing with any text editor 6-18
adding/removing with Editor 6-17
block 6-19
color indicators 2-84
creating in M-files 6-16
formatting in M-files 6-21
multiline statements 6-20
using ... (ellipsis) 6-20
within a line 6-20

comp.soft-sys.matlab 4-54
comparing

directories 6-57
files 6-57

comparing working copy to source control version
on Windows platforms 10-19

completing statements automatically
Command Window 3-19
Editor 6-22

compression
MAT-files and Fig-Files 2-66

conditional breakpoints 6-140
configuration management

See source control system interface 10-1
configuration, desktop 2-6
configurations

reassociating 6-92
renaming 6-92
See also publish configurations 6-78
See also run configurations 6-78

configuring Notebook 9-28
confirmation dialog boxes

preferences 2-69
console mode 3-41
content of M-files, searching 5-60
Contents in Help browser

synchronizing preference 4-39
Contents tab in Help browser

description 4-10
synchronizing with display 4-12

context menus 2-46

continuation
long lines 3-17

continuing long statements 3-17
control keys

editing commands 3-25
Editor 6-70

conversion
Word document to M-book 9-7

crash 1-32
cropping graphics

in M-books 9-26
cssm 4-54
current directory

at startup for MATLAB 1-11
changing 5-45 5-48
contents of 5-48
field in toolbar 5-45
relevance to MATLAB 5-45
tool 5-46
viewing 5-45

Current Directory browser 5-46
auto-refresh rate 5-67
creating blank M-files in 5-55
creating class M-files in 5-55
creating function M-files in 5-55
filtering display in 5-52
hiding columns in 5-52
history of directories 5-67
preferences 5-52 5-65
running Windows shortcuts 5-59
showing columns in 5-52

D
data consistency

calc zones in M-books 9-10
evaluating M-books 9-10
in M-book 9-10

data tips
example 6-129

Index-4

Index

dbclear 6-135
dbstop

example 6-124
deactivate license 2-59
Debugger 6-1
debugging

ending 6-134
example 6-118
features 6-117
M-files 6-97

options 6-5
Notebook 9-10
prompt 6-125
stepping 6-126
techniques 6-97
with unsaved changes 6-139

decimal places in output 3-30
defaults

preferences for MATLAB 2-61
setting in startup file for MATLAB 1-23

Define Autoinit Cell 9-30
Define Calc Zone 9-30
Define Input Cell 9-31
delete 5-57
delete function

preference for recycling 2-66
deleting

files 5-57
variables 5-8

deleting files 2-66
delimiter

matching in Editor/Debugger 3-45
delimiter matching

preferences 3-45
demos

using 4-31
Demos

searching 4-16
desktop

color preferences 2-81

configuration 2-6
description 2-3
font preferences for 2-73
starting without 1-24
tools

closing 2-7
opening 2-4

windows
closing 2-7
opening 2-4

desktop layout
saving 2-6

desktop, docking 2-7
desktop, grouping tools 2-8
desktop, maximizing tools 2-8
desktop, minimizing tools 2-8
desktop, undocking 2-7
development environment for MATLAB 2-3
diagnostics

startup
Macintosh 1-9

diary 3-32
difference reporting for files 6-57
dir 5-49
directories 5-60

comparing 6-57 6-64
copying 5-57
creating 5-55
deleting 5-56
MATLAB

caching 6-74
permissions and 5-54
renaming 5-56
searching 5-49
searching contents of 5-46
See also current directory, search path

disabling
breakpoints 6-134

display pane in Help browser 4-26
displaying

Index-5

Index

output 3-29
displaying source control properties of a

file 10-21
dividers for cells 6-149
do not show again

preferences 2-69
docking tools in desktop 2-7
document titles

in published M-files 8-20
documentation

accessibility 2-91
all products 4-8
most current version 4-8
printing 4-43
prior version 4-8
problems, reporting 4-56
searching 4-16
viewing 4-26
Web site 4-8
without running MATLAB 4-9

documents
arranging in Editor 6-11

dots (...) 3-17
downloading

M-files 4-53
dragging in the desktop 2-52

E
echo execution 3-29
edit

creating new M-file in Editor 6-9
editing

in Command Window 3-16
M-files 6-1

outside of MATLAB 6-5
editor

built-in 6-5
Editor 6-1

arranging documents 6-11

changing casing in 6-15
closing 6-13
closing files 6-75
description 6-7
example 6-118
go to

bookmark 6-45
function 6-44
line number 6-44

highlighting current line in 6-30
horizontal lines 6-151
indenting 6-7
modifying values 6-164
navigating 6-44
navigating back and forward 6-46
navigation keys 6-70
opening files 6-9
other text files 6-13
preferences 6-11
publishing M-files 8-63
redoing an activity 6-16
rule displayed 6-31
running M-files 6-77
running with unsaved changes 6-139
status bar

function 6-31
undoing an activity 6-16
using Command Window features in 6-15

Editor/Debugger
publishing images preferences 8-73
publishing preferences 8-73

EDU>> prompt in Command Window 3-4
ellipses (...) in statements 3-17
Emacs key bindings in Editor 6-70
Embed Figures in M-book 9-25
embedding graphics

in M-book 9-24
encoding

preference when saving 2-66
ending MATLAB 1-31

Index-6

Index

environment settings at startup 1-23
environment variables 3-9
error breakpoints

stop for errors 6-143
error logs 1-32
error message identifiers 6-145
error messages

in Command Window 3-8
error style

definition 9-23
errors

color indicators 2-84
finding in M-files 6-97
run-time 6-97
source control 10-25
syntax 6-97

Evaluate Calc Zone 9-31
Evaluate Cell 9-32
Evaluate Loop 9-33
Evaluate Loop dialog box 9-20
Evaluate M-Book 9-33
evaluating

M-books, ensuring data consistency 9-10
selection in Command History window 3-51
selection in Command Window 3-11

evaluating sections of M-file 6-165
exact phrase

Help browser search 4-21
example code 6-3
examples

in documentation, index of 4-12
running from Help browser 4-29

exe 3-8
executables

running from MATLAB 3-8
executing

group of statements 2-32
execution

displaying functions during 3-29
existing code 6-3

exiting MATLAB 1-31
expanding

code in M-files 6-32

F
f button 6-44
F Inc Search field 6-53
fatal error 1-32
favorites in Help browser 4-24
feedback to The MathWorks 4-56
Fig-files

compatibility 2-66
save options 2-66

file
operations in MATLAB

permissions 5-45
File and Directory Comparisons tool

features of 6-67
file exchange

for M-files 4-53
file management system

See source control system interface 10-1
filebrowser 5-46
files

comparing 6-57
contents, viewing 5-60
copying 5-57
creating in the Current Directory

browser 5-55
deleting 5-56
editing M-files 6-7
log 1-23
MATLAB related, listing 5-49
naming 5-34
opening 5-46 5-58
opening in Editor 6-10
operations in MATLAB 5-45
permissions and 5-54
renaming 5-56

Index-7

Index

running 5-60
running in MATLAB 5-45
searching for 5-49
viewing contents of 5-60

Find Files dialog box 5-60
finding

files using Current Directory browser 5-60
M-files 5-60
string in M-files 5-60
text in Command History window 3-56
text in Command Window 3-33
text in current file 6-51
text in M-files 6-51
text in page of Help browser 4-28

finish.m file running when quitting 1-32
firewall 2-57
flags

for startup 1-18
folders.. See directories
font

adding new family for MATLAB 2-80
antialiasing in desktop 2-80
Help browser 4-39
preferences in MATLAB 2-73
size, additional values 2-73
smoothing in desktop 2-80

format 3-30
controlling numeric format in M-book 9-24
in M-book 9-24
preferences 3-40

formatted blocks
in published M-files 8-48

formatted comments
within cell 8-20

FTP
transferring files via link 3-12

function name
automatic completion

Command Window 3-19
Editor 6-22

function workspace 5-9
functions

color indicators 2-84
displaying during execution 3-29
executing a group of 2-32
help for 4-45

reference page 4-7
long (on multiple lines) 3-17
multiple in one line 3-17
naming 5-34

G
get latest version of file on Windows

platforms 10-15
getting files 10-34
graphical debugger 6-1
graphics

controlling output in M-book 9-25
embedding in M-book 9-24
in M-books 9-24
in published M-files 8-31
within cell 8-28

gray background color in desktop 2-84
gray breakpoint icons 6-123
gray lines in Editor 6-151
green indicator in Editor 6-100
Group Cells 9-33
grouping

tools in desktop 2-8

H
HDF

preference when saving 2-66
headings

within cell 8-20
help 4-47

functions 4-45
in Command Window 4-47

Index-8

Index

M-file description 5-67
M-files 4-8
on selection 4-50
pop-up 4-50

help browser
copying information from 4-29
running examples from 4-29

Help browser 4-3
color preferences 4-42
contents listing 4-10
display pane 4-26
font preferences 4-39
index 4-13
navigating 4-27
printing help 4-43
searching 4-16
viewing page location 4-30

Help Navigator 4-5
helpbrowser 4-3
Hide Cell Markers 9-34
highlighted search terms 4-18
history

automatic log file 1-23
Current Directory browser 5-67
source control on Windows platforms 10-17

history file 3-49
history of statements 3-48
history.m file 3-49
home 3-31
horizontal lines in Editor 6-151
hot keys 2-40

Command Window 3-25
desktop 2-40
Editor 6-70
Variable Editor 5-23

HTML
editing files in Editor 6-13
source, viewing in Help browser 4-29

HTML markup tags
in published M-files 8-34

HTML viewer in MATLAB 2-56
hyperlinks

Command Window 3-12
in published M-files 8-45
running functions by 3-13

I
images

resizing in published documents 8-81
import

files for use with MATLAB 5-34
include

files with MATLAB 5-34
incremental searching

in Editor 6-53
indented text

within cell 8-28
indenting

functions and nested functions 6-30
in Command Window 3-15
in Editor 6-29

index
examples in documentation 4-12
Help browser 4-13

results 4-15
tips 4-15

initiation (init) file for MATLAB 1-23
inline links

within cell 8-45
input

to MATLAB in Command Window 3-3
input cells

controlling evaluation 9-19
controlling graphic output 9-25
converting autoinit cell to 9-31
converting text to 9-31
converting to autoinit cell 9-30
converting to cell groups 9-36
converting to text 9-14

Index-9

Index

defining in M-books 9-11
evaluating 9-16
evaluating cell groups 9-17
evaluating in loop 9-20
maintaining consistency 9-9
timing out during evaluation 9-32
use of Word Normal style 9-14

Input style
definition of 9-23

Insert key
Command Window 3-27
Editor 6-72

insert mode
Command Window 3-27
Editor 6-72

Internet proxy server 2-57
interrupting a running program 3-8
invalid breakpoints 6-123
italic text

in published M-files 8-42
within cell 8-42

iterative programming 6-147

J
Java

editing files in Editor 6-13
Java VM

starting without 1-24
JAWS 2-92

K
K>>

prompt in Command Window 3-4
K>> prompt in Command Window

debugging mode 6-125
keyboard statement 6-99

key bindings 3-44
keyboard 6-99

keyboard shortcuts
Variable Editor 5-23

keyboard shortcuts and accelerators 2-40
keys

editing in Command Window 3-25
Editor 6-70

keywords
color indicators 2-84
in documentation 4-13
matching in Editor/Debugger 3-45

L
LaTex markup

in published M-files 8-36
license information 4-55
license management 2-59
licenses 2-58
line

in Editor 6-31
line breaks

adding for long statements 3-17
line continuation 3-17
line numbers 6-30

going to 6-44
line wrapping 3-41
lines (gray) Editor 6-151
links

Command Window 3-12
in Help browser 4-28
in published M-files 8-45

lists
in published M-files 8-28
within cell 8-28

load 5-7
locking files on checkout 10-34
log

automatic 1-23
file 1-23
session 3-32

Index-10

Index

statements 3-48
logfile startup option 1-23
login

remote on Macintosh 1-9
long lines 3-17
lookfor 5-65
looping

to evaluate input cells 9-20
lowercase usage in MATLAB 3-14

M
M-books

creating 9-2
data consistency 9-10
data integrity 9-9
entering text and commands 9-9
evaluating all input cells 9-19
modifying style template 9-22
opening 9-6
printing 9-22
sizing graphic output 9-26
styles 9-22

M-file
opening selection from 6-50

M-file cells 6-10
publishing and 8-2

M-file comments
purpose of 6-16

m-files
cells and 6-147

M-files
appearance 6-28
checking code 7-16
cleanup before publishing 8-53
colors in 6-28
comparing 6-57
content, viewing 5-60

creating 6-5
from Command History window 3-51
in MATLAB directory 5-41

creating from Command History 6-3
creating from Command Window 6-3
creating in the Current Directory

browser 5-55
creating new 6-8
debugging 6-97

options 6-5
determining cyclomatic complexity of 6-98
determining McCabe complexity of 6-98
editing 6-1

options 6-5
file association (Windows) 1-3
finding 5-60
formatted blocks in 8-48
formatting code for publishing 8-59
formatting comments in 6-21
formatting for publishing 8-11

section titles 8-23
table of contents 8-22

help 4-8
viewing in Current Directory

browser 5-53
naming 5-34
opening 6-9
pausing 6-99
performance of 7-27
printing 6-75
profiling 7-27
publishing 8-63

before and after formatting 8-4
publishing and HTML markup tags 8-34
publishing and LaTeX markup 8-36
publishing bold text in 8-42
publishing graphics in 8-31
publishing hyperlinks in 8-45
publishing italic text in 8-42
publishing lists in 8-28

Index-11

Index

publishing monospaced text in 8-42
publishing process 8-3
publishing TeX Equations in 8-39
publishing trademark symbols in 8-44
publishing with preformatted text 8-26
replacing content 6-51
running

at startup 1-24
from Command Window 3-7
from Current Directory browser 5-60

saving 6-73
search path 5-33
searching contents of 5-60
snapshot of output in published output 8-41
starting MATLAB from 1-3
summary of markup for publishing 8-56
syntax highlighting in 6-28
user-contributed 4-53
viewing help in 5-53

M-lint
suppressing indicators 6-111
suppressing messages 6-111
unexpected MATLAB termination and 6-116

M-Lint 7-16
auto-fix 6-106
Editor access 6-100
suppressing messages 7-17

Macintosh
startup

remote login 1-9
MAT-files

comparing 6-60
compatibility 2-66
compression options 2-66
creating 5-5
defined 5-5
loading 5-7
preferences 2-66
starting MATLAB from 1-3
viewing variables without loading 5-53

matched delimiters
preferences 3-45

matching parentheses
in Editor/Debugger 3-45

Mathtools.net 4-55
MATLAB

commands, executing in a Word
document 9-16

files, listing 5-49
path 5-33
quitting 1-31

confirmation 1-31
matlab directory 1-12
MATLAB functions

running by hyperlink 3-13
matlab.mat 5-7
matlabrc.m, startup file 1-23
matrices

editing 5-13
maximizing

tools in desktop 2-8
measuring performance of M-files 7-27
membership Web page 2-58
message identifiers 6-145
Microsoft Word

converting document to M-book 9-7
minimize

Windows startup option 1-24
minimizing

tools in desktop 2-8
mkdir 5-56
monospaced text

in published M-files 8-42
within cell 8-42

more 3-29
mouse, right-clicking 2-46
multidimensional arrays

editing 5-15
multiple item selection 2-51
multiple lines for statements 3-17

Index-12

Index

multiprocessing 3-8
multithreaded computation 2-72

N
name clashes 5-34
naming functions and variables 5-34
navigating

M-files 6-44
nested

cells in M-files 6-155
nested comments 6-19
nested functions

indenting 6-30
newsgroup for MATLAB 4-54
newsletters 4-55
nodesktop startup option 1-24
nojvm startup option 1-24
Normal style (Microsoft Word)

default style in M-book 9-22
defaults 9-23
used in undefined input cells 9-14

notebook
function 9-2

Notebook
configuring 9-28
debugging 9-10
options 9-34
overview 9-2
platforms supported 9-1

Notebook menu
Word menu bar 9-2

numbering lines 6-30
numeric format

controlling in M-book 9-24
output 3-30
preferences 3-40

O
objects

editing 5-15
%#ok indicator to suppress M-Lint message 7-17
open 5-59
opening files

Current Directory browser 5-58
openvar 5-15
operating system commands 3-8
operators

searching for 4-22
optimizing performance of M-files 7-27
options

shutdown 1-32
startup 1-18

orange underline in M-file 6-105
output

display
format 3-30
hidden 3-29

hiding 3-29
in Command Window 3-3
paging 3-29
spaces per tab 3-42
spacing of 3-41
suppressing 3-29

output cells
converting to text 9-21
purging 9-21

Output style
definition 9-23

overwrite mode
Command Window 3-27
Editor 6-72

P
paging in the Command Window 3-29
parentheses

matching 3-45

Index-13

Index

parentheses matching
preferences 3-45

partial word
Help browser search 4-21

passcodes 2-58
path

adding directories to 5-54
changing 5-37
description 5-33
problems and recovering 5-43
saving changes 5-40
saving for future sessions 5-40
viewing 5-37

PATH environment variable 3-10
pathdef.m 5-35

location 5-40
pathtool 5-35
pausing execution of M-file 6-121
pcode

error checking 6-98
PDF

printing documentation files 4-43
reader, preference for Help browser 4-38

performance
improving for M-files 7-27

periods (...) 3-17
Perl variables

passing
at startup 1-29

permissions
directory operations and 5-54
file operations and 5-54
MATLAB file operations and 5-45

plotting
from the Workspace browser 5-10

pop-up menus 2-46
precision

output display 3-30
preferences

code folding 6-37

Current Directory browser 5-52 5-65
Editor 6-11
MATLAB, general 2-64
publishing 8-73
publishing images 8-73

preformatted text
in published M-files 8-26

printing
Command History window contents 3-57
Command Window contents 3-32
documentation 4-43
help 4-43
M-files 6-75

printing an M-book
cell markers 9-22
color 9-22
defaults 9-22

problems, reporting to The MathWorks 4-54
product filter in Help browser

preference 4-37
profile 7-44

example 7-45
profiling 7-27
programs

running from MATLAB 3-8
stopping while running 3-8

prompt
in Command Window 3-3
when debugging 6-125

properties
source control on Windows platforms 10-21
tab completion

Command Window 3-24
Editor 6-26

publish configuration
creating multiple 8-89
running 8-87

publish configurations
creating 8-65
finding 6-88

Index-14

Index

for M-files in Editor 8-64
porting 8-99
publish settings 8-69
removing 6-91

publish settings
in publish configurations 8-69
template 8-84

publish_configurations.m file 8-99
published documents

resizing images in 8-81
publishing

using M-file cells and 8-2
publishing images preferences 8-73
publishing preferences 8-73
Purge Output Cells 9-35
purging output cells 9-21

Q
quitting

saving workspace 1-32
quitting MATLAB 1-31

confirmation 1-31

R
R Inc Search field 6-53
rapid development 6-147
recall previous lines 3-18
recover deleted files 2-66
recycle function

preference 2-66
red breakpoint icons 6-123
red underline in M-file 6-105
red vertical line

in Editor 6-31
redo

in desktop 2-51
in Editor 6-16

reference pages 4-7

registered trademarks
within cell 8-44

release
latest 2-59

release notes
prior versions 4-7 to 4-8

more extensive 4-8
remote login

Macintosh 1-9
removing files from source control system 10-16
report

generating from M-file code 8-2
reporting

M-file code and results 8-2
requirements

MATLAB 1-1
restoring

tools in desktop 2-8
results in MATLAB, displaying 5-15
revision control

See source control system interface 10-1
right-hand text limit 6-31
roadmap for documentation 4-11
rule

in Editor 6-31
rules (lines) in Editor 6-151
run configuration

creating 6-78
creating multiple 6-84
using 6-78

run configurations
exporting 6-88
finding 6-88
for M-files in Editor 6-78
importing 6-88
porting 6-88
removing 6-91

run_configurations.m file 6-88
run-time errors 6-97
running

Index-15

Index

M-files 5-60

S
save

function 5-7
saving

automatically in Editor 6-74
M-files 6-73
MAT-files

preferences 2-66
workspace upon quitting 1-32

screen reader 2-92
script for startup 1-23
scroll buffer for Command Window 3-42
scrolling in Command Window 3-29
search path 5-33

default 5-33
problems and recovering 5-43
saving for future sessions 5-40

searching
for M-files 5-60
Help browser 4-16

Boolean 4-21
exact phrase (" ") 4-21
results 4-18
text in page 4-28
wildcard (*) or partial word 4-21

M-file content
across files 5-60

special characters 4-22
text

Command History window 3-56
Command Window 3-33

text in current file 6-51
text in M-files 6-51
text, incrementally 6-53

section breaks
in calc zones 9-30

section titles

in published M-files 8-23
segmentation violation 1-32
segv 1-32
selecting multiple items 2-51
semicolon (;)

after functions 3-29
between functions 3-17

separator in functions 3-17
session

automatic log file 1-23
session log

Command History 3-48
diary 3-32

setting breakpoints 6-121
shadowed functions 5-34
shell escape 3-8
shortcut

for MATLAB in Windows 1-2
keys in Editor/Debugger 3-44
keys in MATLAB 2-40

shortcut keys
Command Window editing 3-25
Editor 6-70
Variable Editor 5-23

shortcuts
categories 2-38
creating

from Command History window 3-51
defined 2-32
deleting 2-38
editing 2-38
Editor 6-70
file 2-34
labels, hiding 2-37
moving 2-38
organizing 2-38
toolbar 2-35

shortcuts.xml 2-34
Show Cell Markers 9-34
show file history on Windows platforms 10-17

Index-16

Index

shutdown
MATLAB 1-31
options 1-32

Simulink models
viewing complete description of 5-53

smart indenting 6-29
smart recall 3-18
source control on UNIX platforms

getting files 10-34
locking files 10-34

source control system interface 10-1
UNIX platforms 10-27

preferences 10-28
selecting system 10-28
supported systems 10-27

Windows platforms
adding files 10-10
preferences 10-6
selecting system 10-6
supported systems 10-3

source control system interface on UNIX
platforms
checking in files 10-31
checking out files 10-34
configuring ClearCase source control

system 10-30
undoing file check-out 10-37

source control system interface on Windows
platforms
checking out files 10-13
comparing working copy to source control

version 10-19
displaying file properties 10-21
get latest version of file 10-15
removing files 10-16
showing file history 10-17
starting source control system 10-22
troubleshooting 10-25
undoing file check-out 10-14

spaces in MATLAB commands 3-14

spacing
output in Command Window 3-41
tabs in Command Window 3-42

special characters
searching for 4-22

splash screen
startup option 1-24

split screen display
Editor 6-39

stack
in Editor 6-126
viewing 5-9

Start button 2-44
adding toolboxes 2-46

starting MATLAB
DOS 1-2
UNIX 1-7
Windows 1-2

startup
diagnostics

Macintosh 1-9
directory for MATLAB 1-11
files for MATLAB 1-23
M-file double-click 1-3
Macintosh, remote login 1-9
options for MATLAB 1-18
script 1-23

startup.m
location 1-23
startup file 1-23

statement
definition 3-7

statements
defined 3-6
executing a group of 2-32
long (on multiple lines) 3-17

stepping through M-file 6-126
stopping a running program 3-8
stops

in M-files 6-121

Index-17

Index

stops (...) 3-17
strings

across multiple lines 3-17
color indicators 2-84
saving as Unicode 2-66

structures
editing 5-15
tab completion 3-23 6-26

style preferences for text 2-73
styles in M-book

modifying 9-22
subfunction

displayed in Editor status bar 6-31
subfunctions

going to in M-file 6-44
suggestions to The MathWorks 4-56
support

technical 4-54
suppressing output 3-29
switches

for startup 1-18
symbols

searching for 4-22
syntax

color indicators 2-84
color preferences in MATLAB 2-81
coloring and indenting 3-15
errors 6-97
highlighting 6-28

system environment variables 3-9
system path for UNIX 3-10
system requirements

MATLAB 1-1

T
tab

indenting in Editor 6-29
spacing in Command Window 3-42

tab completion

Command Window 3-19
Editor 6-22

table of contents for help 4-10
Technical Support

contacting 4-54
Web page 2-58

template
publish settings 8-84

templates
M-book 9-22

temporary directory
for deleted files 2-66

terminating a running program 3-8
termination

unexpected 6-116
TeX equations

in published M-files 8-39
text

converting to input cells 9-31
finding in page in Help browser 4-28
preferences in MATLAB 2-73
styles in M-book 9-22

text editors for M-files 6-5
text files

comparing 6-57
editing in Editor 6-13
opening in Editor 6-9

time
measured for M-files 7-27

time-out message
while evaluating multiple input cells in an

M-book 9-32
titles

in published M-files 8-20 8-22 to 8-23
TLC

editing files in Editor 6-13
tmp/MATLAB_Files directory 2-66
Toggle Graph Output for Cell 9-35
token matching

preferences 3-45

Index-18

Index

toolbars
customizing 2-87
desktop 2-47
Editor cell mode 6-148
shortcuts 2-35

toolbox path cache
preferences 1-26

tools in desktop
description 2-3

ToolTips 2-47
for data 6-129
viewing folded code in 6-36

trademark symbols
in published M-files 8-44

trademarks
within cell 8-44

trial versions 2-58
troubleshooting

source control problems 10-25
type ahead feature 3-18

U
UNC (Universal Naming Convention) path 7-4
uncomment 6-17
Undefine Cells 9-35
undo

in desktop 2-51
in Editor 6-16

undocking tools from desktop 2-7
undoing file check-out

on UNIX platforms 10-37
on Windows platforms 10-14

Ungroup Cells 9-36
Unicode

preference when saving 2-66
UNIX

system path 3-10
updates

to newer versions 2-59

updates to products 2-58
uppercase usage in MATLAB 3-14
utilities

running from MATLAB 3-8

V
validating

M-files 7-16
values

examining 6-128
Variable Editor 5-13

cut, copy, paste, clear 5-25
decimal separator 5-32
keyboard shortcuts 5-23
preferences 5-31
size limitations 5-14
undo and redo 5-30

variables
deleting or clearing 5-8
displaying values of 5-15
editing values 5-13
naming 5-34
saving 5-5
viewing 5-53
viewing during execution 6-128
viewing values in Editor 6-129
workspace 5-2

version 2-59
information for MathWorks products 4-55
latest available 2-59

version control
See source control system interface 10-1

viewing desktop tools 2-6
Visible figure property

embedding graphics in M-book 9-25

W
warning breakpoints 6-143

Index-19

Index

warning message identifiers 6-145
Web

accessing from MATLAB 2-58
site for The MathWorks 2-58

Web Browser
font 2-57
in MATLAB 2-56
proxy server 2-57

Web site
documentation 4-8

what 5-49
who 5-4
whos 5-4
wildcard (*)

Help browser search 4-21
windows in desktop

about 2-3
arrangement 2-6
closing 2-7
opening 2-6

Word documents
converting to M-book 9-7

working directory 5-46
workspace

base 5-9
clearing 5-8
defined 5-2
functions 5-9

initializing in M-book 9-13
loading 5-7
M-book contamination 9-9
opening 5-7
protecting integrity 9-9
saving 5-5
tool 5-2
viewing 5-4
viewing during execution 6-128

Workspace browser
description 5-2
plotting variables from 5-10
preferences 5-9

wrapping
lines in Command Window 3-41
long statements 3-17

X
XML

editing files in Editor 6-13

Y
yellow highlighting in M-file

current cell 6-152
data tip 6-129
M-Lint message 6-105

Index-20

	toc
	Startup and Shutdown
	Starting the MATLAB Program on Windows Platforms
	Starting the MATLAB Program from the Windows Desktop or a DOS Wi
	Starting the MATLAB Program from an M-File or Other File Type on
	Utility to Change File Associations for Windows Platforms
	Changing File Associations for the MATLAB Program from the Windo

	Starting the MATLAB Program on UNIX Platforms
	Starting the MATLAB Program on Macintosh Platforms
	Starting the MATLAB Program from the Macintosh Desktop
	Limitation

	Starting the MATLAB Program from the Start MATLAB Settings Dialo
	Starting the MATLAB Program from a Shell on Macintosh Platforms

	Startup Directory for the MATLAB Program
	What Is the Startup Directory?
	Startup Directory (Folder) on Windows Platforms
	Startup Directory When Starting the MATLAB Program from a Window
	Startup Directory When Starting the MATLAB Program from an Assoc
	Startup Directory When Starting the MATLAB Program from a DOS Wi

	Startup Directory on UNIX Platforms
	Startup Directory on Macintosh Platforms
	Changing the Startup Directory
	Changing the Startup Directory Via the userpath Function
	Changing the Startup Directory Using the Shortcut — Windows Plat
	Changing the Startup Directory Using the Start MATLAB Settings D
	Changing the Startup Directory Using the startup.m File

	Startup Options
	About Startup Options
	Specifying Startup Options for Windows Platforms
	Startup Options for a Shortcut in Windows Environment
	Startup Options in a DOS Window

	Specifying Startup Options for UNIX Platforms
	Specifying Startup Options for Macintosh Platforms
	Specifying Startup Options Using the Startup File for the MATLAB
	Location of startup.m

	Commonly Used Startup Options

	Toolbox Path Caching in the MATLAB Program
	About Toolbox Path Caching in the MATLAB Program
	Using the Cache File Upon Startup
	Updating the Cache and Cache File
	How the Toolbox Path Cache Works
	When to Update the Cache
	Steps to Update the Cache
	Function Alternative

	Additional Diagnostics with Toolbox Path Caching

	Other Startup Topics
	Error Log Reporter
	Passing Perl Variables on Startup
	Startup and Calling Java Software from the MATLAB Program

	Quitting the MATLAB Program
	Ways to Quit the MATLAB Program
	Confirm Quitting the MATLAB Program
	Running a Script When Quitting the MATLAB Program
	Abnormal Termination
	When the MATLAB Program Terminates Unexpectedly
	Error Log Reporting
	Recovering Data After an Abnormal Termination

	Desktop
	Overview of the Desktop
	About the Desktop
	Summary of Desktop Tools

	Arranging the Desktop
	Modifying the Desktop Configuration
	Opening and Arranging Tools
	Opening and Arranging Documents
	Example of Documents in the Desktop
	Summary of Actions for Arranging Documents

	Saving Desktop Layouts

	Examples of Desktop Arrangements
	About These Examples
	Tool Outside of Desktop and Other Tools Grouped Inside Desktop E
	Maximized Tool in Desktop Example
	Minimized Tools in Desktop Example
	Tiled Documents in Desktop Example
	No Empty Document Tiles Example
	Maximized Documents Outside of the Desktop Example
	Floating (Cascaded) Figures in Desktop Example
	Undocked Tools and Documents Example

	MATLAB Shortcuts — Easily Run a Group of Statements
	What Is a Shortcut?
	Differences Between Shortcuts and M-Files

	Examples of Useful Shortcuts
	Creating Shortcuts
	Additional Ways to Create Shortcuts

	Running Shortcuts
	Shortcuts Toolbar
	How to Add and What’s New Shortcuts
	Shortcut Labels on Toolbar

	Organizing and Editing Shortcuts

	Keyboard Shortcuts
	Keyboard Shortcuts (Accelerators or Hot Keys) and Mnemonics
	Go To First Letter (Type Ahead) Feature in Desktop Tool Lists
	Default Button and Active Button (Button with Focus)

	Other Desktop Features
	Start Button for Accessing Tools
	Using the Start Button
	Customizing the Start Button

	Menus and Context Menus
	Merged Menus
	Context Menus

	Toolbars
	Current Directory Field

	Status Bar
	Sizing, Arranging, and Sorting Columns in Tools
	Selecting Multiple Items
	Cut, Copy, Paste, and Move
	Drag and Drop

	Macintosh Platform — Differences in the MATLAB Desktop
	Printing and Page Setup Options for Desktop Tools
	Specifying Page Setup Options
	Layout Options for Page Setup
	Header Options for Page Setup
	Fonts Options for Page Setup

	Web Browser
	Function Alternative
	Internet Connection and Fonts for Web Browser — Web Preferences

	Accessing The MathWorks on the Web
	Managing Your License
	Check for Updates
	Terms of Use and Patents

	Preferences
	Setting Preferences
	Function Alternative

	Summary of Preferences
	Preferences File — matlab.prf

	General Preferences for MATLAB Application
	Setting General Preferences for the MATLAB Application
	Toolbox Path Caching Preference
	Figure Window Printing Preference
	Default Behavior of the Delete Function
	Function Alternative

	MAT-Files Preferences
	Function Alternative

	Confirmation Dialogs Preferences
	Source Control Preferences
	Multithreading Preferences

	Fonts Preferences for Desktop Tools
	Setting Desktop Fonts
	Desktop Code Font and Desktop Text Font
	Default Font Settings
	See Also

	Custom Fonts Preferences
	Changing the Font — Example
	See Also

	Antialiasing for Desktop Fonts on Linux and UNIX Platforms
	Making Fonts Available to MATLAB Tools

	Colors Preferences for Desktop Tools
	Setting Colors Used in Desktop Tools
	Desktop Tool Colors
	Gray Background Color

	M-File Syntax Highlighting Colors
	Other Colors
	See Also

	Toolbars Preferences for the MATLAB Desktop and Editor
	Accessibility
	Software Accessibility Support
	Documentation Accessibility Support
	Accessing the Documentation
	Navigating the Documentation
	Products
	Documentation Modifications
	Equations

	Assistive Technologies
	Tested Assistive Technologies
	Use of Other Assistive Technologies

	Installation Notes for Accessibility Support
	Setting Up JAWS Software
	Testing

	Troubleshooting
	JAWS Software Does Not Detect When Installation of the MATLAB So
	JAWS Software Stops Speaking
	Command Output Not Read
	Some GUI Menus Are Treated as Check Boxes
	Text Ignored in Some GUIs

	Internationalization
	How the MATLAB Process Uses Locale Settings
	Calculating Dates in Programs
	Numeric Format Uses C Locale

	Setting the Locale
	Locale Settings on Windows Platforms
	Windows Vista Platforms
	Windows XP Platforms
	Windows Vista Platforms
	Windows XP Platforms

	Locale and UI Language Settings on Linux and Solaris Platforms
	Locale and UI Language Settings on Macintosh Platforms

	Running Functions — Command Window and History
	The Command Window
	About the Command Window
	Opening the Command Window
	Command Window Prompt
	Getting Started Message Bar in the Command Window

	Running Functions and Programs, and Entering Variables
	Running Statements at the Command Line Prompt
	Entering Variables and Running Functions
	Running M-Files
	Examining Errors
	Processing Order
	Interrupting a Running Program

	Running External Programs
	UNIX Platforms System Path for Running UNIX Programs from the MA

	Evaluating or Opening a Selection
	Function Alternative

	Displaying Hyperlinks in the Command Window
	Hyperlinks to Web Pages
	Transferring Files via FTP
	Clicking a Hyperlink to Run MATLAB Functions

	Controlling Input
	Case and Space Sensitivity
	Uppercase and Lowercase for Variables
	Uppercase and Lowercase for Files and Functions
	Spaces in Expressions

	Syntax Highlighting
	Matching Delimiters (Parentheses)
	Cut, Copy, Paste, and Undo Features
	Enter Multiple Lines Without Running Them
	Entering Multiple Functions in a Line
	Entering Long Statements (Line Continuation)
	Recalling Previous Lines
	Tab Completion in the Command Window
	Basic Example — Unique Completion
	Multiple Possible Completions
	Tab Completion for Directories and Filenames
	Tab Completion for Structures
	Tab Completion for Properties

	Keyboard Shortcuts in the Command Window
	Navigating Above the Command Line

	Controlling Output
	Echoing Execution
	Suppressing Output
	Paging of Output in the Command Window
	Formatting and Spacing Numeric Output
	Function Alternative
	Examples of Formats
	Controlling Spacing

	Clearing the Command Window
	Function Alternative

	Printing Command Window Contents
	Keeping a Session Log
	The diary Function
	Other Session Logs

	Searching in the Command Window
	Introduction
	Find Dialog Box
	Incremental Search
	Case Sensitivity in Incremental Search

	Preferences for the Command Window
	Text, Display, Accessibility, and Tab Size Preferences
	Text Display
	Display
	Accessibility
	Tab key

	Keyboard Preferences
	Command Window Key Bindings
	Editor/Debugger Key Bindings
	Tab Completion
	Tabs and Indents
	Delimiter Matching

	Command History Window
	Overview of the Command History Window
	Command History File

	Viewing Statements in the Command History Window
	Using Statements from the Command History Window
	Searching in the Command History Window
	Finding Next Entry By Letter
	Finding Text

	Printing the Command History Window
	Deleting Entries from the Command History Window

	Preferences for Command History
	Overview of Command History Preferences
	Settings
	Save Exit/Quit Commands
	Save Consecutive Duplicate Commands

	Saving
	Save History File On Quit
	Save After n Commands
	Don’t Save History File

	See Also

	Getting Help in MATLAB Software
	Help Browser Overview
	About the Help Browser
	Opening the Help Browser
	Resizing the Help Browser
	Types of Documentation
	Accessing Documentation on the Web
	Adding Your Own Help Files
	Documentation in Other Languages

	Finding Information with the Help Browser
	Help Navigator
	Contents in the Help Browser
	Product Roadmap
	Navigate the Contents Listing
	Icons in the Contents Listing
	Synchronize the Contents Listing and Demos Listing with the Disp

	Index for the Help Browser
	Tips for Using the Index

	Search Documentation and Demos with the Help Browser
	Searching in the Help Browser
	Wildcards in Search (Partial Word)
	Exact Phrases in Search
	Boolean Operators in Search
	More About Search
	Get Fewer Results
	Get More Results

	Favorites
	Add Favorites
	Go to Favorites
	Organize Favorites

	Viewing Documentation in the Help Browser
	About the Display Pane
	Browse to Other Pages
	Links
	Find Text in Displayed Pages
	Copy Information
	Evaluate a Selection
	Open a Selection
	Get Help for a Selection
	View the Page Source (HTML)
	View the Page Location

	Demos in the Help Browser
	About Demos
	Using Demos
	Searching for Demos
	Running Demos and Base Workspace Variables
	Function Alternative

	Adding Your Own Demos

	Preferences for the Help Browser
	Product Filter
	Example Using the Product Filter

	PDF Reader — Specifying Its Location
	General — Keep Contents Synchronized
	Help on Selection — Specifying Where It Displays
	Help Fonts and Colors Preferences
	Specifying Font Name, Style, and Size
	Specifying Colors for the Help Browser

	Printed Documentation
	About Printed Manuals
	Printing a Page from the Help Browser
	Printing the PDF Version of Documentation

	Help Functions
	About Help Functions
	Summary Table of Help Functions
	View Function Reference Pages — the doc Function
	Overloaded Functions with the doc Function

	Getting Help in the Command Window — the help Function
	Overloaded Functions with the help Function
	Creating M-File Help for Your Own M-Files
	Help in the Current Directory Browser
	Help for Model Files

	Getting Help on Selection for Functions
	Other Forms of Help
	Documentation for Other Products
	Product-Specific Help Features
	User-Contributed M-Files
	Technical Support
	Newsgroup for MathWorks Products
	Other Resources for Information About MathWorks Products
	Version and License Information
	Provide Feedback

	Workspace, Search Path, and File Operations
	MATLAB Workspace
	About the Workspace
	Opening the Workspace Browser
	Viewing and Editing Values in the Current Workspace
	Function Alternative

	Saving the Current Workspace
	Saving All Variables
	Saving Selected Variables
	Function Alternative

	Loading a Saved Workspace and Importing Data
	Function Alternative
	Importing Data
	Viewing Variables in MAT-Files

	Changing and Copying Variable Names
	Deleting Workspace Variables
	Function Alternative

	Viewing Base and Function Workspaces Using the Stack
	Creating Plots from the Workspace Browser
	Opening Variables and Objects for Viewing and Editing
	Preferences for the Workspace Browser
	Specify Maximum Array Size on Which to Compute Statistics
	Handling NaN Values in Calculations

	Viewing and Editing Workspace Variables with the Variable Editor
	About the Variable Editor
	Opening the Variable Editor
	Function Alternatives

	Viewing and Editing Cell Arrays, Structures, Objects, and Multid
	Cell Arrays — Viewing and Editing in the Variable Editor
	Structures — Viewing and Editing in the Variable Editor
	Objects and Their Properties — Viewing and Editing in the Variab
	Multidimensional Arrays — Viewing in the Variable Editor

	Navigating and Editing Shortcut Keys for the Variable Editor
	Changing Size, Content, and Format of Variables in the Variable
	Cut, Copy, Paste, and Clear Contents in the Variable Editor
	Example Copying and Pasting Array Elements
	Example Cutting and Pasting Array Elements

	Insert and Delete in the Variable Editor
	Undo and Redo in the Variable Editor
	Exchanging Data with the Command Window
	Exchanging Data with the Microsoft ® Excel Application
	Creating Graphs and Variables, and Data Brushing in the Variable
	Preferences for the Variable Editor
	Format
	Editing
	International Number Handling

	Search Path
	About the Search Path
	How MATLAB Software Determines Which File to Run
	How MATLAB Software Finds the Search Path, pathdef.m
	Viewing and Setting the Search Path
	Viewing the Search Path
	Adding Directories to the Search Path
	Moving Directories Within the Search Path
	Removing Directories from the Search Path
	Restoring the Default Search Path
	Reverting to the Previous Path
	Saving Settings to the Path

	Using the Path in Future Sessions
	Modifying the Path in a startup.m File
	Saving the Path in the Startup Directory
	Saving the Path in matlabroot/toolbox/local

	Recovering from Problems with the Search Path

	File Management Operations
	About MATLAB File Operations
	Current Directory Field
	Current Directory Browser
	Viewing and Making Changes to Directories
	Changing the Current Working Directory and Viewing Its Contents
	Searching the Current Directory Browser
	Changing the Display
	Adding Directories to the MATLAB Search Path

	Creating, Renaming, Copying, and Removing Directories and Files
	General Notes
	Creating New M-Files
	Creating New Directories
	Renaming Files and Directories
	Cutting or Deleting Files and Directories
	Copying and Pasting Files and Directories

	Opening and Running Files
	Opening Files
	Running M-Files

	Finding Files and Content Within Files
	Opening Files from Find Files
	Previous Results of Find Files
	Skip File Types in Find Files
	Function Alternative

	Comparing Files and Directories
	Accessing Source Control Features
	Preferences for the Current Directory Browser
	History
	Browser Display Options
	Auto-Refresh

	Editing and Debugging M-Files
	Begin with Existing Code
	Create M-Files from Command Window and History
	Use Existing M-Files and Examples
	MATLAB and Toolbox Functions
	Demos and Examples
	File Exchange

	Ways to Edit, Evaluate, and Debug M-Files
	Starting, Customizing, and Closing the Editor
	Starting the Editor
	Creating a New File in the Editor
	Function Alternative for Creating New Files

	Opening Existing Files in the Editor
	M-File Cells
	Other Methods for Opening Files in the Editor

	Arranging Editor Documents
	Preferences for the Editor
	Creating and Editing Other Text File Types
	Closing the Editor

	Entering Statements in the Editor
	Use Command Window Features in the Editor
	Changing the Case of Selected Text
	Undo and Redo
	Adding Comments
	Commenting in M-Files Using the MATLAB Editor
	Commenting in Java and C/C++ Files Using the MATLAB Editor
	Commenting in M-File Using Any Text Editor
	Commenting Out Part of a Statement
	Formatting Comments in M-Files

	Tab Completion in the Editor
	Basic Example — Unique Completion
	Multiple Possible Completions
	Narrowing Completions Shown
	Tab Completion for Structures
	Tab Completion for Properties
	Using Tab for Spacing

	Appearance of an M-File — Making Files More Readable
	Syntax Highlighting
	Indenting
	Automatic Indenting
	Manual Indenting

	Function Indenting
	Line and Column Numbers
	Highlight Current Line
	Right-Hand Text Limit
	Class, Function, or Subfunction
	Code Folding — Expanding and Collapsing M-File Constructs
	Viewing Folded Code in a ToolTip
	Code Folding Behavior and Preferences

	Split Screen Display

	Navigating in an M-File
	Going to a Line Number
	Going to a Function (Subfunctions and Nested Functions)
	Going to a Cell

	Going to a Bookmark
	Navigating Back and Forward in Files
	Lines Navigated to Using Go Back
	Interrupting the Sequence of Go Back and Forward
	Closed Files and Behavior of Go Back and Forward
	Split Screen and Behavior of Go Back and Forward

	Opening a Selection in an M-File

	Finding Text in Files
	Finding Text in the Current File
	Finding and Replacing Text in the Current File
	Finding Text
	Replacing Text
	Function Alternative for Finding Text

	Finding Files or Text in Multiple Files
	Incremental Search

	Comparing Files and Directories
	What Is the File and Directory Comparisons Tool?
	Comparing Two Text Files
	Comparing Two MAT-Files
	Comparing Two Binary Files
	Comparing Two Directories
	Using Features of the File and Directory Comparisons Tool
	Increase or Decrease Line Lengths Shown for Text Files
	Exchange Positions
	Show Updated Files
	Find Text
	Replacing a File or Directory Being Compared with Another File o
	View New Comparisons
	View Previous Comparisons

	Alternative Ways to Access the Tool

	Keyboard Shortcuts in the Editor
	Saving, Printing, and Closing Files in the Editor
	Saving Files
	Recommendations on Saving Files
	Autosave
	Accessing Your Source Control System

	Printing M-Files
	Closing M-Files

	Running M-Files in the Editor
	Running M-Files with No Input Arguments in the Editor
	Using Run Configurations to Run M-Files with Input Arguments in
	Create and Use a Run Configuration for an M-File
	Create and Execute Multiple Run Configurations for an M-File
	About the run_configurations.m File
	Find Configurations
	Remove Configurations
	Reassociate and Rename Configurations
	Other Ways to Run M-Files from the Editor

	Finding Errors, Debugging, and Correcting M-Files
	M-Lint Code Analyzer
	What Is the M-Lint code Analyzer?
	Ways to Use M-Lint
	M-Lint Automatic Code Analyzer in the Editor
	Suppressing M-Lint Indicators and Messages
	Ignore Only a Specific Instance
	Disable All Instances in All Files
	Disable Specified Messages or in Selected Files as Needed

	About M-Lint and Unexpected MATLAB Termination

	Debugging Process and Features
	Ways to Debug M-Files
	Preparing for Debugging
	Debugging Example — The Collatz Problem

	Setting Breakpoints
	Setting Standard Breakpoints
	Function Alternative for Setting Breakpoints

	Running an M-File with Breakpoints
	Running the Example
	Results of Running an M-File Containing Breakpoints

	Stepping Through an M-File
	Continue Running in the Example
	Stepping In to Called Function in the Example

	Examining Values
	Selecting the Workspace
	Viewing Values as Data tips in the Editor
	Viewing Values in the Command Window
	Viewing Values in the Workspace Browser and Variable Editor
	Evaluating a Selection
	Examining Values in the Example

	Correcting Problems and Ending Debugging
	Changing Values and Checking Results
	Ending Debugging
	Disabling and Clearing Breakpoints
	Saving Breakpoints
	Correcting an M-File
	Completing the Example
	Running Sections in M-Files That Have Unsaved Changes

	Conditional Breakpoints
	Setting Conditional Breakpoints
	Copying, Modifying, Disabling, and Clearing Conditional Breakpoi
	Function Alternative for Conditional Breakpoints

	Breakpoints in Anonymous Functions
	Error Breakpoints
	Setting Error Breakpoints
	Error Breakpoint Types and Options
	Function Alternative for Error Breakpoints

	Using Cells for Rapid Code Iteration and Publishing Results
	What Are Cells?
	Rapid Code Iteration Overview
	Understanding and Defining Cells
	Steps for Defining Cell Boundaries Explicitly
	Cell Titles and Highlighting
	Example — Define Cells
	Removing Cells

	Understanding Nested Cells
	M-File Without Explicit Cell Breaks
	How Nesting Cell Breaks Result in Cells
	Example M-File With Nested Cell Breaks
	Associating Cell Breaks with Subfunctions

	Navigating and Evaluating with Cells
	Navigating Among Cells in an M-File
	Evaluating Cells in an M-File
	Processing Considerations When Evaluating Cells
	Modifying Values in a Cell
	Example — Evaluate Cells

	Tuning and Managing M-Files
	Directory Reports in Current Directory Browser
	Accessing and Using Directory Reports
	TODO/FIXME Report
	Help Report
	Show Subfunctions
	Description
	Examples
	Show All Help
	See Also
	Copyright

	Contents Report
	Messages in the Contents File Report

	Dependency Report
	Coverage Report

	M-Lint Code Check Report
	Running the M-Lint Code Check Directory Report
	Making Changes Based on M-Lint Messages
	Example Using M-Lint Messages to Improve Code

	Other Ways to Access M-Lint

	Profiling for Improving Performance
	What Is Profiling?
	Profiling Process and Guidelines
	Using Profiling as a Debugging Tool
	Using Profiling for Understanding an M-File

	Using the Profiler
	Opening the Profiler
	Running the Profiler
	Profiling a Graphical User Interface
	Profiling Statements from the Command Window
	Changing Fonts for the Profiler

	Profile Summary Report
	Profile Detail Report
	Controlling the Contents of the Detail Report Display
	Profile Detail Report Header
	Parent Functions
	Busy Lines
	Child Functions
	M-Lint Results
	File Coverage
	Function Listing

	The profile Function
	Example: Using the profile Function
	Accessing profile Function Results
	Saving profile Function Reports
	Using the profile Function to Change the Time Type Used by the P

	Publishing M-Files
	Overview of Publishing M-Files
	What Is Meant by Publishing M-Files?
	Using Cells
	Process for Publishing M-Files
	Example of a Published M-File
	Sample M-File Before Formatting
	Published Sample M-File Before Formatting
	Published Sample M-File After Formatting

	Producing the Formatting for the Example
	M-File Code After Text Markup

	Formatting M-File Comments for Publishing
	Overview of Formatting M-File Comments for Publishing
	Creating Document Titles and Introductory Text for Publishing an
	Specifying a Title for the New Section that the Editor Inserts w
	Creating New Section Titles

	Specifying Preformatted Text in M-Files for Publishing
	Specifying Bulleted or Numbered Lists in M-Files for Publishing
	Specifying Graphics in M-Files for Publishing
	Creating the surfpeaks.jpg Image

	Specifying HTML Markup Tags in M-Files for Publishing
	Specifying LaTeX Markup in M-Files for Publishing
	Specifying TeX Equations and Symbols in M-Files for Publishing
	Forcing a Snapshot of Output in M-Files for Publishing
	Specifying Bold, Italic, and Monospaced Text Formats in M-Files
	Marking Up Existing Comments with Font Formats
	Inserting New Comments with Font Formats
	Example of Font Formats

	Specifying Trademarks in M-Files for Publishing
	Specifying Links in M-Files for Publishing
	URLs as Hyperlinked Text
	Hyperlinked Text Without Printed URLs
	Effect of Using Hyperlinked Text from the MATLAB Command Window

	About Formatted Blocks
	Understanding How Formatted Blocks are Demarcated
	Understanding How Formatted Blocks Work

	Cleaning Up Text Markup Before Publishing M-Files
	Summary of Markup for Formatting M-Files for Publishing
	Summary of Markup Not Requiring a Formatted Block
	Summary of Markup Requiring a Formatted Block

	Formatting M-File Code for Publishing
	Overview of Formatting M-File Code for Publishing
	Example of Published M-File Output
	Sample M-File Before Inserting Cell Breaks in Code
	Sample M-File After Inserting Cell Breaks in Code

	Producing Published Output from M-Files
	About Producing Published Output
	Publishing M-Files Using No Input Arguments and Factory Default
	Using Publish Configurations to Publish M-Files with Input Argum
	Function Alternative to Publishing

	Creating a Publish Configuration for an M-File
	Specify and Save Publish Configuration Settings
	Specify Values for the Publish Settings Property Table
	Output file format Property
	Output folder Property
	Cascading style sheet Property
	Figure capture method Property
	Image format Property
	Use new figure Property
	Max image width Property
	Max image height Property
	Create thumbnail Property
	Include code Property
	Evaluate code Property
	Catch error Property
	Max # of output lines Property

	Creating a Template for Typical Publish Settings
	Run an Existing Publish Configuration
	Create and Run Multiple Publish Configurations for an M-File
	Example of Publishing sine_wave_f.m to Microsoft Word
	Steps for Publishing sine_wave_f.m to HTML
	Steps for Publishing sine_wave_f.m to Microsoft ® PowerPoint

	About the publish_configurations.m File
	Find Publish Configurations
	Remove Publish Configurations
	Reassociate and Rename Publish Configurations

	Using Notebook to Publish to Microsoft Word
	About Using Notebook to Publish to Word
	Using Notebook to Create an M-book
	Creating or Opening an M-Book
	Creating an M-Book from the MATLAB Desktop
	Creating an M-Book While Running Notebook
	Opening an Existing M-Book
	Converting a Word Document to an M-Book

	Entering MATLAB Commands in an M-Book
	Protecting the Integrity of Your Workspace in M-Books
	Ensuring Data Consistency in M-Books
	Debugging and Notebook

	Defining MATLAB Commands as Input Cells for Notebook
	Defining Commands as Input Cells for Notebook
	Defining Cell Groups for Notebook
	Creating a Cell Group for Notebook

	Defining Autoinit Input Cells for Notebook
	Creating an Autoinit Cell for Notebook

	Defining Calc Zones for Notebook
	Creating a Calc Zone

	Converting an Input Cell to Text with Notebook

	Evaluating MATLAB Commands with Notebook
	Evaluating Input Commands with Notebook
	Evaluating Cell Groups with Notebook
	Evaluating a Range of Input Cells with Notebook
	Evaluating a Calc Zone with Notebook
	Evaluating an Entire M-Book
	Controlling Execution of Multiple Commands

	Using a Loop to Evaluate Input Cells Repeatedly with Notebook
	Converting Output Cells to Text with Notebook
	Deleting Output Cells with Notebook

	Printing and Formatting an M-Book
	Printing an M-Book
	Modifying Styles in the M-Book Template
	Choosing Loose or Compact Format for Notebook
	Controlling Numeric Output Format for Notebook
	Controlling Graphic Output for Notebook
	Embedding Graphic Output in the M-Book
	Suppressing Graphic Output for Individual Input Cells in Noteboo
	Sizing Graphic Output in Notebook
	Cropping Graphic Output in Notebook
	Adding White Space Around Graphic Output in Notebook

	Configuring Notebook
	Notebook Feature Reference
	Bring MATLAB to Front
	Define Autoinit Cell
	Result
	Format
	See Also

	Define Calc Zone
	Result
	See Also

	Define Input Cell
	Result
	Format
	See Also

	Evaluate Calc Zone
	Result
	See Also

	Evaluate Cell
	Result
	See Also

	Evaluate Loop
	Evaluate M-Book
	Result
	See Also

	Group Cells
	Result
	See Also

	Hide Cell Markers
	Notebook Options
	See Also

	Purge Selected Output Cells
	See Also

	Toggle Graph Output for Cell
	See Also

	Undefine Cells
	See Also

	Ungroup Cells
	See Also

	Source Control Interface
	Source Control Interface on Microsoft Windows
	Setting Up the Source Control Interface on Microsoft Windows
	Create Projects in Source Control System
	Example of Creating Source Control Project

	Specify Source Control System with MATLAB Software
	Function Alternative

	Register Source Control Project with MATLAB Software
	Add Files to Source Control
	Function Alternative

	Checking Files Into and Out of Source Control from the MATLAB De
	Check Files Into Source Control
	Function Alternative

	Check Files Out of Source Control
	Function Alternative

	Undoing the Checkout
	Function Alternative

	Additional Source Control Actions on Microsoft Windows
	Getting the Latest Version of Files for Viewing or Compiling
	Function Alternative

	Removing Files from the Source Control System
	Function Alternative

	Showing File History
	Function Alternative

	Comparing the Working Copy of a File to the Latest Version in So
	Function Alternative

	Viewing Source Control Properties of a File
	Function Alternative

	Starting the Source Control System
	Function Alternative

	Performing Source Control Actions from the Editor, Simulink, or
	Troubleshooting Source Control Problems on Microsoft Windows
	Source Control Error: Provider Not Present or Not Installed Prop
	Restriction Against @ Character
	Add to Source Control Is the Only Action Available
	More Solutions for Source Control Problems

	Source Control Interface on UNIX Platforms
	Specifying the Source Control System on UNIX Platforms
	MATLAB Desktop Alternative
	Function Alternative
	Setting a View and Checking Out a Directory with ClearCase Softw

	Checking Files Into the Source Control System on UNIX Platforms
	Checking In One or More Files Using the Current Directory Browse
	Checking In One File Using the Editor, or the Simulink or Statef
	Function Alternative
	Example Using checkin Function

	Checking Files Out of the Source Control System on UNIX
	Checking Out One or More Files Using the Current Directory Brows
	Checking Out a Single File Using the Editor, or the Simulink or
	Function Alternative
	Example Using checkout Function—Check Out a Specific Version of

	Undoing the Checkout on UNIX Platforms
	Impact of Undoing a File Checkout
	Undoing the Checkout for One or More Files Using the Current Dir
	Undoing the Checkout for a Single File Using the Editor, or the
	Function Alternative

	Index

	tables
	File Type and Resulting Action

